Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Pathog ; 18(8): e1010742, 2022 08.
Article in English | MEDLINE | ID: mdl-35972973

ABSTRACT

Deposition of human amyloids is associated with complex human diseases such as Alzheimer's and Parkinson's. Amyloid proteins are also produced by bacteria. The bacterial amyloid curli, found in the extracellular matrix of both commensal and pathogenic enteric bacterial biofilms, forms complexes with extracellular DNA, and recognition of these complexes by the host immune system may initiate an autoimmune response. Here, we isolated early intermediate, intermediate, and mature curli fibrils that form throughout the biofilm development and investigated the structural and pathogenic properties of each. Early intermediate aggregates were smaller than intermediate and mature curli fibrils, and circular dichroism, tryptophan, and thioflavin T analyses confirmed the establishment of a beta-sheet secondary structure as the curli conformations matured. Intermediate and mature curli fibrils were more immune stimulatory than early intermediate fibrils in vitro. The intermediate curli was cytotoxic to macrophages independent of Toll-like receptor 2. Mature curli fibrils had the highest DNA content and induced the highest levels of Isg15 expression and TNFα production in macrophages. In mice, mature curli fibrils induced the highest levels of anti-double-stranded DNA autoantibodies. The levels of autoantibodies were higher in autoimmune-prone NZBWxF/1 mice than wild-type C57BL/6 mice. Chronic exposure to all curli forms led to significant histopathological changes and synovial proliferation in the joints of autoimmune-prone mice; mature curli was the most detrimental. In conclusion, curli fibrils, generated during biofilm formation, cause pathogenic autoimmune responses that are stronger when curli complexes contain higher levels of DNA and in mice predisposed to autoimmunity.


Subject(s)
Interferon Type I , Salmonella typhimurium , Amyloid/genetics , Animals , Autoantibodies , Autoimmunity , Bacterial Proteins/metabolism , Biofilms , DNA/metabolism , Humans , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL , Salmonella typhimurium/genetics
2.
Brain Behav Immun ; 117: 100-111, 2024 03.
Article in English | MEDLINE | ID: mdl-38199516

ABSTRACT

Oxycodone is the most prescribed opioid for pain management and has been available in clinics for almost a century, but effects of chronic oxycodone have been studied less than morphine in preclinical and clinical studies. Newly developed depression has been coupled with chronic oxycodone use in a few clinical studies, but no preclinical studies have investigated the pathogenesis of oxycodone-induced depression. Gut microbiome changes following oxycodone use is an understudied area, and interleukin-17A (IL-17A) is linked to both the development of mood disorders and regulation of gut microbiome. The present study investigated effects of chronic oxycodone exposure on mood-related behaviors (depression and anxiety), pain hypersensitivity, physical dependence, immune markers, and the gut microbiome and tested the hypothesis that blocking IL-17A with a systemically administered monoclonal antibody reduces oxycodone-derived effects. Oxycodone (using an incremental dosing regimen) or saline was injected twice a day for 12 days. IL-17A Ab (200 µg/100 µl) or saline was administered every 3rd day during the 12-day interval. Chronic oxycodone induced a depression-like effect, but not anxiogenic- or anxiolytic-like effects; promoted hyperalgesia; increased IL-17A and IL-6 levels in the ventral tegmental area (VTA); and induced physical dependence. IL-17A Ab co-administration with oxycodone prevented the depression-like effect and hyperalgesia, reduced naloxone-precipitated withdrawal signs, and normalized the increase in cytokine levels. Chronic oxycodone exposure did not affect gut microbiome and integrity. Our results identify a role for IL-17A in oxycodone-related behavioral and neuroimmune effects and show that IL-17A Ab has potential therapeutic value in blocking these effects. Given that humanized IL-17A Ab is approved for treatment of psoriasis and psoriatic arthritis, our findings point toward studying it for use in the treatment of oxycodone use disorder.


Subject(s)
Oxycodone , Substance-Related Disorders , Rats , Animals , Oxycodone/pharmacology , Ventral Tegmental Area , Interleukin-17/metabolism , Interleukin-6/pharmacology , Depression/drug therapy , Hyperalgesia/drug therapy
3.
Immunity ; 42(6): 1171-84, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26084027

ABSTRACT

Research on the human microbiome has established that commensal and pathogenic bacteria can influence obesity, cancer, and autoimmunity through mechanisms mostly unknown. We found that a component of bacterial biofilms, the amyloid protein curli, irreversibly formed fibers with bacterial DNA during biofilm formation. This interaction accelerated amyloid polymerization and created potent immunogenic complexes that activated immune cells, including dendritic cells, to produce cytokines such as type I interferons, which are pathogenic in systemic lupus erythematosus (SLE). When given systemically, curli-DNA composites triggered immune activation and production of autoantibodies in lupus-prone and wild-type mice. We also found that the infection of lupus-prone mice with curli-producing bacteria triggered higher autoantibody titers compared to curli-deficient bacteria. These data provide a mechanism by which the microbiome and biofilm-producing enteric infections may contribute to the progression of SLE and point to a potential molecular target for treatment of autoimmunity.


Subject(s)
Amyloid/metabolism , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Dendritic Cells/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Lupus Erythematosus, Systemic/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Amyloid/immunology , Animals , Autoantibodies/biosynthesis , Bacterial Proteins/immunology , Biofilms/growth & development , Cells, Cultured , DNA, Bacterial/immunology , Humans , Interferon Type I/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Inbred NZB , Polymerization
4.
Nature ; 553(7687): 208-211, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323293

ABSTRACT

Inflammatory diseases of the gastrointestinal tract are frequently associated with dysbiosis, characterized by changes in gut microbial communities that include an expansion of facultative anaerobic bacteria of the Enterobacteriaceae family (phylum Proteobacteria). Here we show that a dysbiotic expansion of Enterobacteriaceae during gut inflammation could be prevented by tungstate treatment, which selectively inhibited molybdenum-cofactor-dependent microbial respiratory pathways that are operational only during episodes of inflammation. By contrast, we found that tungstate treatment caused minimal changes in the microbiota composition under homeostatic conditions. Notably, tungstate-mediated microbiota editing reduced the severity of intestinal inflammation in mouse models of colitis. We conclude that precision editing of the microbiota composition by tungstate treatment ameliorates the adverse effects of dysbiosis in the inflamed gut.


Subject(s)
Colitis/drug therapy , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/microbiology , Anaerobiosis/drug effects , Animals , Cell Respiration/drug effects , Dysbiosis/drug therapy , Dysbiosis/microbiology , Enterobacteriaceae/drug effects , Enterobacteriaceae/growth & development , Enterobacteriaceae/metabolism , Female , Inflammation/drug therapy , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/pathology , Male , Mice , Mice, Inbred C57BL , Molybdenum/metabolism , Tungsten Compounds/pharmacology , Tungsten Compounds/therapeutic use
5.
PLoS Pathog ; 16(7): e1008591, 2020 07.
Article in English | MEDLINE | ID: mdl-32645118

ABSTRACT

Reactive arthritis, an autoimmune disorder, occurs following gastrointestinal infection with invasive enteric pathogens, such as Salmonella enterica. Curli, an extracellular, bacterial amyloid with cross beta-sheet structure can trigger inflammatory responses by stimulating pattern recognition receptors. Here we show that S. Typhimurium produces curli amyloids in the cecum and colon of mice after natural oral infection, in both acute and chronic infection models. Production of curli was associated with an increase in anti-dsDNA autoantibodies and joint inflammation in infected mice. The negative impacts on the host appeared to be dependent on invasive systemic exposure of curli to immune cells. We hypothesize that in vivo synthesis of curli contributes to known complications of enteric infections and suggest that cross-seeding interactions can occur between pathogen-produced amyloids and amyloidogenic proteins of the host.


Subject(s)
Arthritis, Infectious/immunology , Bacterial Proteins/immunology , Typhoid Fever/immunology , Animals , Antibodies, Antinuclear/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Infectious/metabolism , Bacterial Proteins/biosynthesis , Intestine, Large/immunology , Intestine, Large/microbiology , Mice , Typhoid Fever/metabolism
6.
PLoS Pathog ; 15(4): e1007745, 2019 04.
Article in English | MEDLINE | ID: mdl-31009517

ABSTRACT

The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium.


Subject(s)
Dysbiosis/immunology , Gastroenteritis/immunology , Inflammation/immunology , Interferon Type I/immunology , STAT2 Transcription Factor/physiology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Animals , Cells, Cultured , Dysbiosis/metabolism , Dysbiosis/pathology , Female , Gastroenteritis/metabolism , Gastroenteritis/microbiology , Gastroenteritis/pathology , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interferon Type I/metabolism , Intestines/immunology , Intestines/microbiology , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Neutrophils/pathology , STAT1 Transcription Factor/physiology , Salmonella Infections/metabolism , Salmonella Infections/microbiology , Salmonella Infections/pathology
7.
FASEB J ; 34(2): 2497-2510, 2020 02.
Article in English | MEDLINE | ID: mdl-31908004

ABSTRACT

Sepsis is a leading cause of morbidity and mortality in intensive care units. Previously, we identified Protein Kinase C-delta (PKCδ) as an important regulator of the inflammatory response in sepsis. An important issue in development of anti-inflammatory therapeutics is the risk of immunosuppression and inability to effectively clear pathogens. In this study, we investigated whether PKCδ inhibition prevented organ dysfunction and improved survival without compromising pathogen clearance. Sprague Dawley rats underwent sham surgery or cecal ligation and puncture (CLP) to induce sepsis. Post-surgery, PBS or a PKCδ inhibitor (200µg/kg) was administered intra-tracheally (IT). At 24 hours post-CLP, there was evidence of lung and kidney dysfunction. PKCδ inhibition decreased leukocyte influx in these organs, decreased endothelial permeability, improved gas exchange, and reduced blood urea nitrogen/creatinine ratios indicating organ protection. PKCδ inhibition significantly decreased bacterial levels in the peritoneal cavity, spleen and blood but did not exhibit direct bactericidal properties. Peritoneal chemokine levels, neutrophil numbers, or macrophage phenotypes were not altered by PKCδ inhibition. Peritoneal macrophages isolated from PKCδ inhibitor-treated septic rats demonstrated increased bacterial phagocytosis. Importantly, PKCδ inhibition increased survival. Thus, PKCδ inhibition improved survival and improved survival was associated with increased phagocytic activity, enhanced pathogen clearance, and decreased organ injury.


Subject(s)
Bacteria/immunology , Enzyme Inhibitors/pharmacology , Macrophages, Peritoneal , Neutrophils , Protein Kinase C-delta/antagonists & inhibitors , Sepsis , Animals , Chemokines , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/pathology , Male , Neutrophils/immunology , Neutrophils/pathology , Phagocytosis/drug effects , Protein Kinase C-delta/immunology , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy , Sepsis/immunology , Sepsis/microbiology , Sepsis/pathology
8.
J Immunol ; 200(10): 3626-3634, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29654208

ABSTRACT

The cytokine IFN-γ has well-established antibacterial properties against the bacterium Salmonella enterica in phagocytes, but less is known about the effects of IFN-γ on Salmonella-infected nonphagocytic cells, such as intestinal epithelial cells (IECs) and fibroblasts. In this article, we show that exposing human and murine IECs and fibroblasts to IFN-γ following infection with Salmonella triggers a novel form of cell death that is neither pyroptosis nor any of the major known forms of programmed cell death. Cell death required IFN-γ-signaling via STAT1-IRF1-mediated induction of guanylate binding proteins and the presence of live Salmonella in the cytosol. In vivo, ablating IFN-γ signaling selectively in murine IECs led to higher bacterial burden in colon contents and increased inflammation in the intestine of infected mice. Together, these results demonstrate that IFN-γ signaling triggers release of Salmonella from the Salmonella-containing vacuole into the cytosol of infected nonphagocytic cells, resulting in a form of nonpyroptotic cell death that prevents bacterial spread in the gut.


Subject(s)
Cell Death/immunology , Interferon-gamma/immunology , Phagocytes/immunology , Pyroptosis/immunology , Salmonella Infections/immunology , Salmonella enterica/immunology , 3T3 Cells , Animals , Cell Line , Cytosol/immunology , Cytosol/microbiology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Fibroblasts/immunology , Fibroblasts/microbiology , Humans , Inflammation/immunology , Inflammation/microbiology , Interferon Regulatory Factor-1/immunology , Intestines/immunology , Intestines/microbiology , Mice , Phagocytes/microbiology , STAT1 Transcription Factor/immunology , Salmonella Infections/microbiology
9.
J Bacteriol ; 201(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31182496

ABSTRACT

Enterobacteriaceae produce amyloid proteins called curli that are the major proteinaceous component of biofilms. Amyloids are also produced by humans and are associated with diseases such as Alzheimer's. During the multistep process of amyloid formation, monomeric subunits form oligomers, protofibrils, and finally mature fibrils. Amyloid ß oligomers are more cytotoxic to cells than the mature amyloid fibrils. Oligomeric intermediates of curli had not been previously detected. We determined that turbulence inhibited biofilm formation and that, intriguingly, curli aggregates purified from cultures grown under high-turbulence conditions were structurally smaller and contained less DNA than curli preparations from cultures grown with less turbulence. Using flow cytometry analysis, we demonstrated that CsgA was expressed in cultures exposed to higher turbulence but that these cultures had lower levels of cell death than less-turbulent cultures. Our data suggest that the DNA released during cell death drives the formation of larger fibrillar structures. Consistent with this idea, addition of exogenous genomic DNA increased the size of the curli intermediates and led to binding to thioflavin T at levels observed with mature aggregates. Similar to the intermediate oligomers of amyloid ß, intermediate curli aggregates were more cytotoxic than the mature curli fibrils when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.IMPORTANCE Amyloid proteins are the major proteinaceous components of biofilms, which are associated with up to 65% of human bacterial infections. Amyloids produced by human cells are also associated with diseases such as Alzheimer's. The amyloid monomeric subunits self-associate to form oligomers, protofibrils, and finally mature fibrils. Amyloid ß oligomers are more cytotoxic to cells than the mature amyloid fibrils. Here we detected oligomeric intermediates of curli for the first time. Like the oligomers of amyloid ß, intermediate curli fibrils were more cytotoxic than the mature curli fibrillar aggregates when incubated with bone marrow-derived macrophages. The discovery of cytotoxic curli intermediates will enable research into the roles of amyloid intermediates in the pathogenesis of Salmonella and other bacteria that cause enteric infections.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/physiology , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/physiology
10.
PLoS Pathog ; 13(4): e1006315, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28410407

ABSTRACT

Bacterial biofilms are associated with numerous human infections. The predominant protein expressed in enteric biofilms is the amyloid curli, which forms highly immunogenic complexes with DNA. Infection with curli-expressing bacteria or systemic exposure to purified curli-DNA complexes triggers autoimmunity via the generation of type I interferons (IFNs) and anti-double-stranded DNA antibodies. Here, we show that DNA complexed with amyloid curli powerfully stimulates Toll-like receptor 9 (TLR9) through a two-step mechanism. First, the cross beta-sheet structure of curli is bound by cell-surface Toll-like receptor 2 (TLR2), enabling internalization of the complex into endosomes. After internalization, the curli-DNA immune complex binds strongly to endosomal TLR9, inducing production of type I IFNs. Analysis of wild-type and TLR2-deficient macrophages showed that TLR2 is the major receptor that drives the internalization of curli-DNA complexes. Suppression of TLR2 internalization via endocytosis inhibitors led to a significant decrease in Ifnß expression. Confocal microscopy analysis confirmed that the TLR2-bound curli was required for shuttling of DNA to endosomal TLR9. Structural analysis using small-angle X-ray scattering revealed that incorporation of DNA into curli fibrils resulted in the formation of ordered curli-DNA immune complexes. Curli organizes parallel, double-stranded DNA rods at an inter-DNA spacing that matches up well with the steric size of TLR9. We also found that production of anti-double-stranded DNA autoantibodies in response to curli-DNA was attenuated in TLR2- and TLR9-deficient mice and in mice deficient in both TLR2 and TLR9 compared to wild-type mice, suggesting that both innate immune receptors are critical for shaping the autoimmune adaptive immune response. We also detected significantly lower levels of interferon-stimulated gene expression in response to purified curli-DNA in TLR2 and TLR9 deficient mice compared to wild-type mice, confirming that TLR2 and TLR9 are required for the induction of type I IFNs. Finally, we showed that curli-DNA complexes, but not cellulose, were responsible elicitation of the immune responses to bacterial biofilms. This study defines the series of events that lead to the severe pro-autoimmune effects of amyloid-expressing bacteria and suggest a mechanism by which amyloid curli acts as a carrier to break immune tolerance to DNA, leading to the activation of TLR9, production of type I IFNs, and subsequent production of autoantibodies.


Subject(s)
Amyloid/immunology , Autoimmunity , Bacterial Proteins/immunology , DNA, Bacterial/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 9/immunology , Amyloid/chemistry , Amyloid/genetics , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Salmonella Infections/microbiology , Salmonella typhimurium/genetics , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 2/genetics , Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/genetics
11.
Infect Immun ; 83(2): 693-701, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25422268

ABSTRACT

Amyloids are proteins with cross-ß-sheet structure that contribute to pathology and inflammation in complex human diseases, including Alzheimer's disease, Parkinson's disease, type II diabetes, and secondary amyloidosis. Bacteria also produce amyloids as a component of their extracellular matrix during biofilm formation. Recently, several human amyloids were shown to activate the NLRP3 inflammasome, leading to the activation of caspase 1 and production of interleukin 1ß (IL-1ß). In this study, we investigated the activation of the NLRP3 inflammasome by bacterial amyloids using curli fibers, produced by Salmonella enterica serovar Typhimurium and Escherichia coli. Here, we show that curli fibers activate the NLRP3 inflammasome, leading to the production of IL-1ß via caspase 1 activation. Investigation of the underlying mechanism revealed that activation of Toll-like receptor 2 (TLR2) by curli fibers is critical in the generation of IL-1ß. Interestingly, activation of the NLRP3 inflammasome by curli fibers or by amyloid ß of Alzheimer's disease does not cause cell death in macrophages. Overall, these data identify a cross talk between TLR2 and NLRP3 in response to the bacterial amyloid curli and generation of IL-1ß as a product of this interaction.


Subject(s)
Amyloid/immunology , Bacterial Proteins/immunology , Carrier Proteins/immunology , Interleukin-1beta/biosynthesis , Toll-Like Receptor 2/immunology , Amyloid beta-Peptides/immunology , Animals , Bone Marrow Cells , Caspase 1/biosynthesis , Cells, Cultured , Escherichia coli/metabolism , Inflammasomes/immunology , Macrophages , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Salmonella typhimurium/metabolism
12.
J Biol Chem ; 288(20): 14178-14188, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23548899

ABSTRACT

Amyloids, protein aggregates with a cross ß-sheet structure, contribute to inflammation in debilitating disorders, including Alzheimer's disease. Enteric bacteria also produce amyloids, termed curli, contributing to inflammation during infection. It has been demonstrated that curli and ß-amyloid are recognized by the immune system via the Toll-like receptor (TLR) 2/TLR1 complex. Here we investigated the role of CD14 in the immune recognition of bacterial amyloids. We used HeLa 57A cells, a human cervical cancer cell line containing a luciferase reporter gene under the control of an NF-κB promoter. When HeLa 57A cells were transiently transfected with combinations of human expression vectors containing genes for TLR2, TLR1, and CD14, membrane-bound CD14 enhanced NF-κB activation through the TLR2/TLR1 complex stimulated with curli fibers or recombinant CsgA, the curli major subunit. Similarly, soluble CD14 augmented the TLR2/TLR1 response to curli fibers in the absence of membrane-bound CD14. We further revealed that IL-6 and nitric oxide production were significantly higher by wild-type (C57BL/6) bone marrow-derived macrophages compared with TLR2-deficient or CD14-deficient bone marrow-derived macrophages when stimulated with curli fibers, recombinant CsgA, or synthetic CsgA peptide, CsgA-R4-5. Binding assays demonstrated that recombinant TLR2, TLR1, and CD14 bound purified curli fibers. Interestingly, CD14-curli interaction was specific to the fibrillar form of the amyloid, as demonstrated by using synthetic CsgA peptides proficient and deficient in fiber formation, respectively. Activation of the TLR2/TLR1/CD14 trimolecular complex by amyloids provides novel insights for innate immunity with implications for amyloid-associated diseases.


Subject(s)
Bacterial Proteins/immunology , Lipopolysaccharide Receptors/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Animals , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , HeLa Cells , Humans , Immunity, Innate , Interleukin-6/metabolism , Macrophages/cytology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitrites/metabolism , Plasmids/metabolism , Protein Binding , Recombinant Proteins/metabolism , Salmonella typhimurium/metabolism
13.
Curr Opin Microbiol ; 79: 102473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608623

ABSTRACT

Bacteria are known to produce amyloids, proteins characterized by a conserved cross-beta sheet structure, which exhibit structural and functional similarities to human amyloids. The deposition of human amyloids into fibrillar plaques within organs is closely linked to several debilitating human diseases, including Alzheimer's and Parkinson's disease. Recently, bacterial amyloids have garnered significant attention as potential initiators of human amyloid-associated diseases as well as autoimmune diseases. This review aims to explore how bacterial amyloid, particularly curli found in gut biofilms, can act as a trigger for neurodegenerative and autoimmune diseases. We will elucidate three primary mechanisms through which bacterial amyloids exert their influence: By delving into these three distinct modes of action, this review will provide valuable insights into the intricate relationship between bacterial amyloids and the onset or progression of neurodegenerative and autoimmune diseases. A comprehensive understanding of these mechanisms may open new avenues for therapeutic interventions and preventive strategies targeting amyloid-associated diseases.


Subject(s)
Amyloid , Autoimmune Diseases , Bacterial Proteins , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/microbiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/microbiology , Autoimmune Diseases/immunology , Amyloid/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacteria/metabolism , Bacteria/pathogenicity , Bacteria/genetics , Animals
14.
Cell Mol Gastroenterol Hepatol ; 18(1): 89-104, 2024.
Article in English | MEDLINE | ID: mdl-38556049

ABSTRACT

BACKGROUND & AIMS: Mounting evidence suggests the gastrointestinal microbiome is a determinant of peripheral immunity and central neurodegeneration, but the local disease mechanisms remain unknown. Given its potential relevance for early diagnosis and therapeutic intervention, we set out to map the pathogenic changes induced by bacterial amyloids in the gastrointestinal tract and its enteric nervous system. METHODS: To examine the early response, we challenged primary murine myenteric networks with curli, the prototypical bacterial amyloid, and performed shotgun RNA sequencing and multiplex enzyme-linked immunosorbent assay. Using enteric neurosphere-derived glial and neuronal cell cultures, as well as in vivo curli injections into the colon wall, we further scrutinized curli-induced pathogenic pathways. RESULTS: Curli induced a proinflammatory response, with strong up-regulation of Saa3 and the secretion of several cytokines. This proinflammatory state was induced primarily in enteric glia, was accompanied by increased levels of DNA damage and replication, and triggered the influx of immune cells in vivo. The addition of recombinant Serum Amyloid A3 (SAA3) was sufficient to recapitulate this specific proinflammatory phenotype while Saa3 knock-out attenuated curli-induced DNA damage and replication. Similar to curli, recombinant SAA3 caused a strong up-regulation of Saa3 transcripts, illustrating its self-amplifying potential . Since colonization of curli-producing Salmonella and dextran sulfate sodium-induced colitis triggered a significant increase in Saa3 transcripts as well, we assume SAA3plays a central role in enteric dysfunction. Inhibition of dual leucine zipper kinase, an upstream regulator of the c-Jun N-terminal kinase pathway responsible for SAA3 production, attenuated curli- and recombinant SAA3-induced Saa3 up-regulation, DNA damage, and replication in enteric glia. CONCLUSIONS: Our results position SAA3 as an important mediator of gastrointestinal vulnerability to bacterial-derived amyloids and demonstrate the potential of dual leucine zipper kinase inhibition to dampen enteric pathology.


Subject(s)
Enteric Nervous System , Serum Amyloid A Protein , Animals , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Enteric Nervous System/immunology , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Mice , Bacterial Proteins/metabolism , Inflammation/immunology , Inflammation/pathology , Inflammation/metabolism , Neuroglia/metabolism , Neuroglia/immunology , Neuroglia/pathology , Mice, Inbred C57BL , Cytokines/metabolism , Gastrointestinal Microbiome/immunology , Mice, Knockout , Colitis/immunology , Colitis/microbiology , Colitis/pathology , Neurons/metabolism , Neurons/pathology
15.
Infect Immun ; 81(2): 478-86, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23208603

ABSTRACT

Curli fibrils, the best-characterized functional bacterial amyloids, are an important component of enterobacterial biofilms. We have previously shown that curli fibrils are recognized by the Toll-like receptor 2 (TLR2)/TLR1 heterodimer complex. Utilizing polarized T-84 cells, an intestinal epithelial cell line derived from colon carcinoma grown on semipermeable tissue culture inserts, we determined that infection with a Salmonella enterica serovar Typhimurium csgBA mutant, which does not express curli, resulted in an increase in intestinal barrier permeability and an increase in bacterial translocation compared to infection with curliated wild-type S. Typhimurium. When the TLR2 downstream signaling molecule phosphatidylinositol 3-kinase (PI3K) was blocked using wortmannin or LY294002, the difference in disruption of the intestinal epithelium and bacterial translocation was no longer observed. Additionally, disruption of polarized T-84 cells treated basolaterally with the TLR5 ligand flagellin was prevented when the polarized cells were simultaneously treated with the synthetic TLR2/TLR1 ligand Pam(3)CSK(4) or with purified curli fibrils in the apical compartment. Similar to in vitro observations, C57BL/6 mice infected with the csgBA mutant suffered increased disruption of the intestinal epithelium and therefore greater dissemination of the bacteria to the mesenteric lymph nodes than mice infected with wild-type S. Typhimurium. The differences in disruption of the intestinal epithelium and bacterial dissemination in the mice infected with csgBA mutant or wild-type S. Typhimurium were not apparent in TLR2-deficient mice. Overall, these studies report for the first time that activation of the TLR2/PI3K pathway by microbial amyloids plays a critical role in regulating the intestinal epithelial barrier as well as monitoring bacterial translocation during infection.


Subject(s)
Bacterial Proteins/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Salmonella enterica/metabolism , Toll-Like Receptor 2/metabolism , Amyloid/metabolism , Animals , Cell Line, Tumor , Epithelial Cells/microbiology , Female , Flagellin/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , HeLa Cells , Humans , Interleukin-8/metabolism , Intestinal Mucosa/microbiology , Ligands , Mice , Mice, Inbred C57BL , Permeability , Signal Transduction , Toll-Like Receptor 1/metabolism
16.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-36792064

ABSTRACT

The major biofilm pathway in Salmonella enterica serovar Typhimurium involves specific growth conditions that induce the csgA gene whose product forms surface curli fibers that mediate biofilm formation. We have found that the previously uncharacterized STM1266 gene in S. Typhimurium plays a role in regulating biofilm formation via the curli pathway. S. Typhimurium ΔSTM1266 strains display a biofilm defect, and overexpression of STM1266 results in enhanced biofilm formation. STM1266 deletion resulted in lowered csgA expression using promoter-reporter ß-galactosidase assays, and csgA and csgD deletions abrogate the effects of STM1266 overexpression on biofilm formation while deletion of bcsA (encoding an essential enzyme for cellulose formation) has no effect. In a mouse infection model, the ΔSTM1266 strain displayed results similar to those seen for previously reported ΔcsgA strains. The STM1266 gene is predicted to encode a DNA-binding transcriptional regulator of the MerR family and is homologous to the Escherichia coli BluR regulator protein. We respectfully propose to ascribe the name brfS (biofilm regulator for Salmonella Typhimurium) to the STM1266 gene.


Subject(s)
Bacterial Proteins , Biofilms , Salmonella typhimurium , Animals , Mice , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Serogroup , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Gut Microbes ; 15(1): 2221813, 2023.
Article in English | MEDLINE | ID: mdl-37317012

ABSTRACT

The Salmonella biofilm-associated amyloid protein, curli, is a dominant instigator of systemic inflammation and autoimmune responses following Salmonella infection. Systemic curli injections or infection of mice with Salmonella Typhimurium induce the major features of reactive arthritis, an autoimmune disorder associated with Salmonella infection in humans. In this study, we investigated the link between inflammation and microbiota in exacerbating autoimmunity. We studied C57BL/6 mice from two sources, Taconic Farms and Jackson Labs. Mice from Taconic Farms have been reported to have higher basal levels of the inflammatory cytokine IL - 17 than do mice from Jackson Labs due to the differences in their microbiota. When we systemically injected mice with purified curli, we observed a significant increase in diversity in the microbiota of Jackson Labs mice but not in that of the Taconic mice. In Jackson Labs, mice, the most striking effect was the expansion of Prevotellaceae. Furthermore, there were increases in the relative abundance of the family Akkermansiaceae and decreases in families Clostridiaceae and Muribaculaceae in Jackson Labs mice. Curli treatment led to significantly aggravated immune responses in the Taconic mice compared to Jackson Labs counterparts. Expression and production of IL - 1ß, a cytokine known to promote IL - 17 production, as well as expression of Tnfa increased in the gut mucosa of Taconic mice in the first 24 hours after curli injections, which correlated with significant increases in the number of neutrophils and macrophages in the mesenteric lymph nodes. A significant increase in the expression of Ccl3 in colon and cecum of Taconic mice injected with curli was detected. Taconic mice injected with curli also had elevated levels of inflammation in their knees. Overall, our data suggest that autoimmune responses to bacterial ligands, such as curli, are amplified in individuals with a microbiome that promote inflammation.


Subject(s)
Arthritis , Gastrointestinal Microbiome , Microbiota , Salmonella Infections , Humans , Animals , Mice , Mice, Inbred C57BL , Immunity, Mucosal , Amyloidogenic Proteins , Inflammation , Bacteroidetes
18.
Infect Immun ; 80(12): 4398-408, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23027540

ABSTRACT

The Toll-like receptor 2 (TLR2)/TLR1 receptor complex responds to amyloid fibrils, a common component of biofilm material produced by members of the phyla Firmicutes, Bacteroidetes, and Proteobacteria. To determine whether this TLR2/TLR1 ligand stimulates inflammatory responses when bacteria enter intestinal tissue, we investigated whether expression of curli amyloid fibrils by the invasive enteric pathogen Salmonella enterica serotype Typhimurium contributes to T helper 1 and T helper 17 responses by measuring cytokine production in the mouse colitis model. A csgBA mutant, deficient in curli production, elicited decreased expression of interleukin 17A (IL-17A) and IL-22 in the cecal mucosa compared to the S. Typhimurium wild type. In TLR2-deficient mice, IL-17A and IL-22 expression was blunted during S. Typhimurium infection, suggesting that activation of the TLR2 signaling pathway contributes to the expression of these cytokines. T cells incubated with supernatants from bone marrow-derived dendritic cells (BMDCs) treated with curli fibrils released IL-17A in a TLR2-dependent manner in vitro. Lower levels of IL-6 and IL-23 production were detected in the supernatants of the TLR2-deficient BMDCs treated with curli fibrils. Consistent with this, three distinct T-cell populations-CD4(+) T helper cells, cytotoxic CD8(+) T cells, and γδ T cells-produced IL-17A in response to curli fibrils in the intestinal mucosa during S. Typhimurium infection. Notably, decreased IL-6 expression by the dendritic cells and decreased IL-23 expression by the dendritic cells and macrophages were observed in the cecal mucosa of mice infected with the curli mutant. We conclude that TLR2 recognition of bacterial amyloid fibrils in the intestinal mucosa represents a novel mechanism of immunoregulation, which contributes to the generation of inflammatory responses, including production of IL-17A and IL-22, in response to bacterial entry into the intestinal mucosa.


Subject(s)
Amyloid/immunology , Interleukin-17/metabolism , Interleukins/metabolism , Salmonella typhimurium/immunology , Toll-Like Receptor 2/metabolism , Amyloid/genetics , Amyloid/metabolism , Animals , Cells, Cultured , Colitis/immunology , Colitis/microbiology , Disease Models, Animal , Female , HT29 Cells , Humans , Interleukin-17/immunology , Interleukins/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mice, Inbred BALB C , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , Toll-Like Receptor 2/genetics , Interleukin-22
19.
Bio Protoc ; 12(10): e4419, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35813019

ABSTRACT

Microbiologists are learning to appreciate the importance of "functional amyloids" that are produced by numerous bacterial species and have impacts beyond the microbial world. These structures are used by bacteria to link together, presumably to increase survival, protect against harsh conditions, and perhaps to influence cell-cell communication. Bacterial functional amyloids are also beginning to be appreciated in the context of host-pathogen interactions, where there is evidence that they can trigger the innate immune system and are recognized as non-self-molecular patterns. The characteristic three-dimensional fold of amyloids renders them similar across the bacterial kingdom and into the eukaryotic world, where amyloid proteins can be undesirable and have pathological consequences. The bacterial protein curli, produced by pathogenic Salmonella enterica and Escherichia coli strains, was one of the first functional amyloids discovered. Curli have since been well characterized in terms of function, and we are just starting to scratch the surface about their potential impact on eukaryotic hosts. In this manuscript, we present step-by-step protocols with pictures showing how to purify these bacterial surface structures. We have described the purification process from S. enterica, acknowledging that the same method can be applied to E. coli. In addition, we describe methods for detection of curli within animal tissues (i.e., GI tract) and discuss purifying curli intermediates in a S. enterica msbB mutant strain as they are more cytotoxic than mature curli fibrils. Some of these methods were first described elsewhere, but we wanted to assemble them together in more detail to make it easier for researchers who want to purify curli for use in biological experiments. Our aim is to provide methods that are useful for specialists and non-specialists as bacterial amyloids become of increasing importance.

20.
Curr Opin Struct Biol ; 75: 102435, 2022 08.
Article in English | MEDLINE | ID: mdl-35863164

ABSTRACT

Bacteria are microscopic, single-celled organisms known for their ability to adapt to their environment. In response to stressful environmental conditions or in the presence of a contact surface, they commonly form multicellular aggregates called biofilms. Biofilms form on various abiotic or biotic surfaces through a dynamic stepwise process involving adhesion, growth, and extracellular matrix production. Biofilms develop on tissues as well as on implanted devices during infections, providing the bacteria with a mechanism for survival under harsh conditions including targeting by the immune system and antimicrobial therapy. Like pathogenic bacteria, members of the human microbiota can form biofilms. Biofilms formed by enteric bacteria contribute to several human diseases including autoimmune diseases and cancer. However, until recently the interactions of immune cells with biofilms had been mostly uncharacterized. Here, we will discuss how components of the enteric biofilm produced in vivo, specifically amyloid curli and extracellular DNA, could be interacting with the host's immune system causing an unpredicted immune response.


Subject(s)
Autoimmune Diseases , Autoimmunity , Amyloid , Amyloidogenic Proteins , Bacteria , Biofilms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL