Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 672
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 389(1): 45-57, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37318140

ABSTRACT

BACKGROUND: Guidelines recommend normocapnia for adults with coma who are resuscitated after out-of-hospital cardiac arrest. However, mild hypercapnia increases cerebral blood flow and may improve neurologic outcomes. METHODS: We randomly assigned adults with coma who had been resuscitated after out-of-hospital cardiac arrest of presumed cardiac or unknown cause and admitted to the intensive care unit (ICU) in a 1:1 ratio to either 24 hours of mild hypercapnia (target partial pressure of arterial carbon dioxide [Paco2], 50 to 55 mm Hg) or normocapnia (target Paco2, 35 to 45 mm Hg). The primary outcome was a favorable neurologic outcome, defined as a score of 5 (indicating lower moderate disability) or higher, as assessed with the use of the Glasgow Outcome Scale-Extended (range, 1 [death] to 8, with higher scores indicating better neurologic outcome) at 6 months. Secondary outcomes included death within 6 months. RESULTS: A total of 1700 patients from 63 ICUs in 17 countries were recruited, with 847 patients assigned to targeted mild hypercapnia and 853 to targeted normocapnia. A favorable neurologic outcome at 6 months occurred in 332 of 764 patients (43.5%) in the mild hypercapnia group and in 350 of 784 (44.6%) in the normocapnia group (relative risk, 0.98; 95% confidence interval [CI], 0.87 to 1.11; P = 0.76). Death within 6 months after randomization occurred in 393 of 816 patients (48.2%) in the mild hypercapnia group and in 382 of 832 (45.9%) in the normocapnia group (relative risk, 1.05; 95% CI, 0.94 to 1.16). The incidence of adverse events did not differ significantly between groups. CONCLUSIONS: In patients with coma who were resuscitated after out-of-hospital cardiac arrest, targeted mild hypercapnia did not lead to better neurologic outcomes at 6 months than targeted normocapnia. (Funded by the National Health and Medical Research Council of Australia and others; TAME ClinicalTrials.gov number, NCT03114033.).


Subject(s)
Cardiopulmonary Resuscitation , Coma , Hypercapnia , Out-of-Hospital Cardiac Arrest , Adult , Humans , Carbon Dioxide/blood , Coma/blood , Coma/etiology , Hospitalization , Hypercapnia/blood , Hypercapnia/etiology , Out-of-Hospital Cardiac Arrest/blood , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/therapy , Critical Care
2.
Circulation ; 149(2): e168-e200, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38014539

ABSTRACT

The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Heart Arrest , Humans , American Heart Association , Heart Arrest/diagnosis , Heart Arrest/therapy , Critical Care/methods
3.
N Engl J Med ; 386(8): 724-734, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35196426

ABSTRACT

BACKGROUND: Whether the treatment of rhythmic and periodic electroencephalographic (EEG) patterns in comatose survivors of cardiac arrest improves outcomes is uncertain. METHODS: We conducted an open-label trial of suppressing rhythmic and periodic EEG patterns detected on continuous EEG monitoring in comatose survivors of cardiac arrest. Patients were randomly assigned in a 1:1 ratio to a stepwise strategy of antiseizure medications to suppress this activity for at least 48 consecutive hours plus standard care (antiseizure-treatment group) or to standard care alone (control group); standard care included targeted temperature management in both groups. The primary outcome was neurologic outcome according to the score on the Cerebral Performance Category (CPC) scale at 3 months, dichotomized as a good outcome (CPC score indicating no, mild, or moderate disability) or a poor outcome (CPC score indicating severe disability, coma, or death). Secondary outcomes were mortality, length of stay in the intensive care unit (ICU), and duration of mechanical ventilation. RESULTS: We enrolled 172 patients, with 88 assigned to the antiseizure-treatment group and 84 to the control group. Rhythmic or periodic EEG activity was detected a median of 35 hours after cardiac arrest; 98 of 157 patients (62%) with available data had myoclonus. Complete suppression of rhythmic and periodic EEG activity for 48 consecutive hours occurred in 49 of 88 patients (56%) in the antiseizure-treatment group and in 2 of 83 patients (2%) in the control group. At 3 months, 79 of 88 patients (90%) in the antiseizure-treatment group and 77 of 84 patients (92%) in the control group had a poor outcome (difference, 2 percentage points; 95% confidence interval, -7 to 11; P = 0.68). Mortality at 3 months was 80% in the antiseizure-treatment group and 82% in the control group. The mean length of stay in the ICU and mean duration of mechanical ventilation were slightly longer in the antiseizure-treatment group than in the control group. CONCLUSIONS: In comatose survivors of cardiac arrest, the incidence of a poor neurologic outcome at 3 months did not differ significantly between a strategy of suppressing rhythmic and periodic EEG activity with the use of antiseizure medication for at least 48 hours plus standard care and standard care alone. (Funded by the Dutch Epilepsy Foundation; TELSTAR ClinicalTrials.gov number, NCT02056236.).


Subject(s)
Anticonvulsants/therapeutic use , Coma/physiopathology , Electroencephalography , Heart Arrest/complications , Seizures/drug therapy , Aged , Anticonvulsants/adverse effects , Coma/etiology , Female , Glasgow Coma Scale , Heart Arrest/physiopathology , Humans , Male , Middle Aged , Seizures/diagnosis , Seizures/etiology , Treatment Outcome
4.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Article in English | MEDLINE | ID: mdl-38687499

ABSTRACT

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Subject(s)
Critical Care , Intensive Care Units , Precision Medicine , Humans , Precision Medicine/methods , Critical Care/methods , Critical Care/standards , Consensus , Syndrome , Critical Illness/therapy , Phenotype , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/classification
5.
N Engl J Med ; 384(24): 2283-2294, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34133859

ABSTRACT

BACKGROUND: Targeted temperature management is recommended for patients after cardiac arrest, but the supporting evidence is of low certainty. METHODS: In an open-label trial with blinded assessment of outcomes, we randomly assigned 1900 adults with coma who had had an out-of-hospital cardiac arrest of presumed cardiac or unknown cause to undergo targeted hypothermia at 33°C, followed by controlled rewarming, or targeted normothermia with early treatment of fever (body temperature, ≥37.8°C). The primary outcome was death from any cause at 6 months. Secondary outcomes included functional outcome at 6 months as assessed with the modified Rankin scale. Prespecified subgroups were defined according to sex, age, initial cardiac rhythm, time to return of spontaneous circulation, and presence or absence of shock on admission. Prespecified adverse events were pneumonia, sepsis, bleeding, arrhythmia resulting in hemodynamic compromise, and skin complications related to the temperature management device. RESULTS: A total of 1850 patients were evaluated for the primary outcome. At 6 months, 465 of 925 patients (50%) in the hypothermia group had died, as compared with 446 of 925 (48%) in the normothermia group (relative risk with hypothermia, 1.04; 95% confidence interval [CI], 0.94 to 1.14; P = 0.37). Of the 1747 patients in whom the functional outcome was assessed, 488 of 881 (55%) in the hypothermia group had moderately severe disability or worse (modified Rankin scale score ≥4), as compared with 479 of 866 (55%) in the normothermia group (relative risk with hypothermia, 1.00; 95% CI, 0.92 to 1.09). Outcomes were consistent in the prespecified subgroups. Arrhythmia resulting in hemodynamic compromise was more common in the hypothermia group than in the normothermia group (24% vs. 17%, P<0.001). The incidence of other adverse events did not differ significantly between the two groups. CONCLUSIONS: In patients with coma after out-of-hospital cardiac arrest, targeted hypothermia did not lead to a lower incidence of death by 6 months than targeted normothermia. (Funded by the Swedish Research Council and others; TTM2 ClinicalTrials.gov number, NCT02908308.).


Subject(s)
Fever/therapy , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest/therapy , Aged , Body Temperature , Cardiopulmonary Resuscitation/methods , Coma/etiology , Coma/therapy , Female , Fever/etiology , Humans , Hypothermia, Induced/adverse effects , Kaplan-Meier Estimate , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/complications , Out-of-Hospital Cardiac Arrest/mortality , Single-Blind Method , Treatment Outcome
6.
Am Heart J ; 271: 97-108, 2024 05.
Article in English | MEDLINE | ID: mdl-38417773

ABSTRACT

BACKGROUND: Delayed hypothermia, initiated after hospital arrival, several hours after cardiac arrest with 8-10 hours to reach the target temperature, is likely to have limited impact on overall survival. However, the effect of ultrafast hypothermia, i.e., delivered intra-arrest or immediately after return of spontaneous circulation (ROSC), on functional neurologic outcome after out-of-hospital cardiac arrest (OHCA) is unclear. In two prior trials, prehospital trans-nasal evaporative intra-arrest cooling was safe, feasible and reduced time to target temperature compared to delayed cooling. Both studies showed trends towards improved neurologic recovery in patients with shockable rhythms. The aim of the PRINCESS2-study is to assess whether cooling, initiated either intra-arrest or immediately after ROSC, followed by in-hospital hypothermia, significantly increases survival with complete neurologic recovery as compared to standard normothermia care, in OHCA patients with shockable rhythms. METHODS/DESIGN: In this investigator-initiated, randomized, controlled trial, the emergency medical services (EMS) will randomize patients at the scene of cardiac arrest to either trans-nasal cooling within 20 minutes from EMS arrival with subsequent hypothermia at 33°C for 24 hours after hospital admission (intervention), or to standard of care with no prehospital or in-hospital cooling (control). Fever (>37,7°C) will be avoided for the first 72 hours in both groups. All patients will receive post resuscitation care and withdrawal of life support procedures according to current guidelines. Primary outcome is survival with complete neurologic recovery at 90 days, defined as modified Rankin scale (mRS) 0-1. Key secondary outcomes include survival to hospital discharge, survival at 90 days and mRS 0-3 at 90 days. In total, 1022 patients are required to detect an absolute difference of 9% (from 45 to 54%) in survival with neurologic recovery (80% power and one-sided α=0,025, ß=0,2) and assuming 2,5% lost to follow-up. Recruitment starts in Q1 2024 and we expect maximum enrolment to be achieved during Q4 2024 at 20-25 European and US sites. DISCUSSION: This trial will assess the impact of ultrafast hypothermia applied on the scene of cardiac arrest, as compared to normothermia, on 90-day survival with complete neurologic recovery in OHCA patients with initial shockable rhythm. TRIAL REGISTRATION: NCT06025123.


Subject(s)
Emergency Medical Services , Hypothermia, Induced , Out-of-Hospital Cardiac Arrest , Recovery of Function , Humans , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/mortality , Hypothermia, Induced/methods , Emergency Medical Services/methods , Cardiopulmonary Resuscitation/methods , Male , Female , Time Factors , Return of Spontaneous Circulation , Electric Countershock/methods
7.
Crit Care Med ; 52(1): 80-91, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37678211

ABSTRACT

OBJECTIVES: Peripheral venoarterial extracorporeal membrane oxygenation (ECMO) with femoral access is obtained through unilateral or bilateral groin cannulation. Whether one cannulation strategy is associated with a lower risk for limb ischemia remains unknown. We aim to assess if one strategy is preferable. DESIGN: A retrospective cohort study based on the Extracorporeal Life Support Organization registry. SETTING: ECMO centers worldwide included in the Extracorporeal Life Support Organization registry. PATIENTS: All adult patients (≥ 18 yr) who received peripheral venoarterial ECMO with femoral access and were included from 2014 to 2020. INTERVENTIONS: Unilateral or bilateral femoral cannulation. MEASUREMENTS AND MAIN RESULTS: The primary outcome was the occurrence of limb ischemia defined as a composite endpoint including the need for a distal perfusion cannula (DPC) after 6 hours from implantation, compartment syndrome/fasciotomy, amputation, revascularization, and thrombectomy. Secondary endpoints included bleeding at the peripheral cannulation site, need for vessel repair, vessel repair after decannulation, and in-hospital death. Propensity score matching was performed to account for confounders. Overall, 19,093 patients underwent peripheral venoarterial ECMO through unilateral ( n = 11,965) or bilateral ( n = 7,128) femoral cannulation. Limb ischemia requiring any intervention was not different between both groups (bilateral vs unilateral: odds ratio [OR], 0.92; 95% CI, 0.82-1.02). However, there was a lower rate of compartment syndrome/fasciotomy in the bilateral group (bilateral vs unilateral: OR, 0.80; 95% CI, 0.66-0.97). Bilateral cannulation was also associated with lower odds of cannulation site bleeding (bilateral vs unilateral: OR, 0.87; 95% CI, 0.76-0.99), vessel repair (bilateral vs unilateral: OR, 0.55; 95% CI, 0.38-0.79), and in-hospital mortality (bilateral vs unilateral: OR, 0.85; 95% CI, 0.81-0.91) compared with unilateral cannulation. These findings were unchanged after propensity matching. CONCLUSIONS: This study showed no risk reduction for overall limb ischemia-related events requiring DPC after 6 hours when comparing bilateral to unilateral femoral cannulation in peripheral venoarterial ECMO. However, bilateral cannulation was associated with a reduced risk for compartment syndrome/fasciotomy, lower rates of bleeding and vessel repair during ECMO, and lower in-hospital mortality.


Subject(s)
Catheterization, Peripheral , Compartment Syndromes , Extracorporeal Membrane Oxygenation , Adult , Humans , Extracorporeal Membrane Oxygenation/methods , Retrospective Studies , Hospital Mortality , Catheterization, Peripheral/methods , Risk Factors , Ischemia/etiology , Femoral Artery
8.
Eur J Neurol ; 31(4): e16208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38270448

ABSTRACT

BACKGROUND AND PURPOSE: Depth electroencephalography (dEEG) is an emerging neuromonitoring technology in acute brain injury (ABI). We aimed to explore the concordances between electrophysiological activities on dEEG and on scalp EEG (scEEG) in ABI patients. METHODS: Consecutive ABI patients who received dEEG monitoring between 2018 and 2022 were included. Background, sporadic epileptiform discharges, rhythmic and periodic patterns (RPPs), electrographic seizures, brief potentially ictal rhythmic discharges, ictal-interictal continuum (IIC) patterns, and hourly RPP burden on dEEG and scEEG were compared. RESULTS: Sixty-one ABI patients with a median dEEG monitoring duration of 114 h were included. dEEG significantly showed less continuous background (75% vs. 90%, p = 0.03), higher background amplitude (p < 0.001), more frequent rhythmic spike-and-waves (16% vs. 3%, p = 0.03), more IIC patterns (39% vs. 21%, p = 0.03), and greater hourly RPP burden (2430 vs. 1090 s/h, p = 0.01), when compared to scEEG. Among five patients with seizures on scEEG, one patient had concomitant seizures on dEEG, one had periodic discharges (not concomitant) on dEEG, and three had no RPPs on dEEG. Features and temporal occurrence of electrophysiological activities observed on dEEG and scEEG are not strongly associated. Patients with seizures and IIC patterns on dEEG seemed to have a higher rate of poor outcomes at discharge than patients without these patterns on dEEG (42% vs. 25%, p = 0.37). CONCLUSIONS: dEEG can detect abnormal electrophysiological activities that may not be seen on scEEG and can be used as a complement in the neuromonitoring of ABI patients.


Subject(s)
Brain Injuries , Scalp , Humans , Prognosis , Electroencephalography , Seizures
9.
Crit Care ; 28(1): 104, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561829

ABSTRACT

Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adult , Humans , Critical Care/methods , Intracranial Pressure , Brain Injuries/therapy , Brain Injuries/complications , Brain , Monitoring, Physiologic/methods
10.
Crit Care ; 28(1): 199, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877571

ABSTRACT

Haemoglobin (Hb) thresholds and red blood cells (RBC) transfusion strategies in traumatic brain injury (TBI) are controversial. Our objective was to assess the association of Hb values with long-term outcomes in critically ill TBI patients. We conducted a secondary analysis of CENTER-TBI, a large multicentre, prospective, observational study of European TBI patients. All patients admitted to the Intensive Care Unit (ICU) with available haemoglobin data on admission and during the first week were included. During the first seven days, daily lowest haemoglobin values were considered either a continous variable or categorised as < 7.5 g/dL, between 7.5-9.5 and > 9.5 g/dL. Anaemia was defined as haemoglobin value < 9.5 g/dL. Transfusion practices were described as "restrictive" or "liberal" based on haemoglobin values before transfusion (e.g. < 7.5 g/dL or 7.5-9.5 g/dL). Our primary outcome was the Glasgow outcome scale extended (GOSE) at six months, defined as being unfavourable when < 5. Of 1590 included, 1231 had haemoglobin values available on admission. A mean Injury Severity Score (ISS) of 33 (SD 16), isolated TBI in 502 (40.7%) and a mean Hb value at ICU admission of 12.6 (SD 2.2) g/dL was observed. 121 (9.8%) patients had Hb < 9.5 g/dL, of whom 15 (1.2%) had Hb < 7.5 g/dL. 292 (18.4%) received at least one RBC transfusion with a median haemoglobin value before transfusion of 8.4 (IQR 7.7-8.5) g/dL. Considerable heterogeneity regarding threshold transfusion was observed among centres. In the multivariable logistic regression analysis, the increase of haemoglobin value was independently associated with the decrease in the occurrence of unfavourable neurological outcomes (OR 0.78; 95% CI 0.70-0.87). Congruous results were observed in patients with the lowest haemoglobin values within the first 7 days < 7.5 g/dL (OR 2.09; 95% CI 1.15-3.81) and those between 7.5 and 9.5 g/dL (OR 1.61; 95% CI 1.07-2.42) compared to haemoglobin values > 9.5 g/dL. Results were consistent when considering mortality at 6 months as an outcome. The increase of hemoglobin value was associated with the decrease of mortality (OR 0.88; 95% CI 0.76-1.00); haemoglobin values less than 7.5 g/dL was associated with an increase of mortality (OR 3.21; 95% CI 1.59-6.49). Anaemia was independently associated with long-term unfavourable neurological outcomes and mortality in critically ill TBI patients.Trial registration: CENTER-TBI is registered at ClinicalTrials.gov, NCT02210221, last update 2022-11-07.


Subject(s)
Blood Transfusion , Brain Injuries, Traumatic , Critical Illness , Hemoglobins , Intensive Care Units , Humans , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/mortality , Brain Injuries, Traumatic/complications , Male , Female , Middle Aged , Hemoglobins/analysis , Prospective Studies , Critical Illness/therapy , Adult , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Blood Transfusion/methods , Blood Transfusion/statistics & numerical data , Aged , Anemia/therapy , Anemia/blood , Treatment Outcome , Glasgow Outcome Scale , Erythrocyte Transfusion/methods , Erythrocyte Transfusion/statistics & numerical data
11.
Crit Care ; 28(1): 189, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834995

ABSTRACT

BACKGROUND: The aim of this retrospective cohort study was to develop and validate on multiple international datasets a real-time machine learning model able to accurately predict persistent acute kidney injury (AKI) in the intensive care unit (ICU). METHODS: We selected adult patients admitted to ICU classified as AKI stage 2 or 3 as defined by the "Kidney Disease: Improving Global Outcomes" criteria. The primary endpoint was the ability to predict AKI stage 3 lasting for at least 72 h while in the ICU. An explainable tree regressor was trained and calibrated on two tertiary, urban, academic, single-center databases and externally validated on two multi-centers databases. RESULTS: A total of 7759 ICU patients were enrolled for analysis. The incidence of persistent stage 3 AKI varied from 11 to 6% in the development and internal validation cohorts, respectively and 19% in external validation cohorts. The model achieved area under the receiver operating characteristic curve of 0.94 (95% CI 0.92-0.95) in the US external validation cohort and 0.85 (95% CI 0.83-0.88) in the Italian external validation cohort. CONCLUSIONS: A machine learning approach fed with the proper data pipeline can accurately predict onset of Persistent AKI Stage 3 during ICU patient stay in retrospective, multi-centric and international datasets. This model has the potential to improve management of AKI episodes in ICU if implemented in clinical practice.


Subject(s)
Acute Kidney Injury , Intensive Care Units , Machine Learning , Humans , Acute Kidney Injury/diagnosis , Acute Kidney Injury/therapy , Machine Learning/trends , Machine Learning/standards , Male , Female , Retrospective Studies , Middle Aged , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Aged , Cohort Studies , ROC Curve , Adult
12.
Crit Care ; 28(1): 170, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38769582

ABSTRACT

AIMS AND SCOPE: The aim of this panel was to develop consensus recommendations on targeted temperature control (TTC) in patients with severe traumatic brain injury (TBI) and in patients with moderate TBI who deteriorate and require admission to the intensive care unit for intracranial pressure (ICP) management. METHODS: A group of 18 international neuro-intensive care experts in the acute management of TBI participated in a modified Delphi process. An online anonymised survey based on a systematic literature review was completed ahead of the meeting, before the group convened to explore the level of consensus on TTC following TBI. Outputs from the meeting were combined into a further anonymous online survey round to finalise recommendations. Thresholds of ≥ 16 out of 18 panel members in agreement (≥ 88%) for strong consensus and ≥ 14 out of 18 (≥ 78%) for moderate consensus were prospectively set for all statements. RESULTS: Strong consensus was reached on TTC being essential for high-quality TBI care. It was recommended that temperature should be monitored continuously, and that fever should be promptly identified and managed in patients perceived to be at risk of secondary brain injury. Controlled normothermia (36.0-37.5 °C) was strongly recommended as a therapeutic option to be considered in tier 1 and 2 of the Seattle International Severe Traumatic Brain Injury Consensus Conference ICP management protocol. Temperature control targets should be individualised based on the perceived risk of secondary brain injury and fever aetiology. CONCLUSIONS: Based on a modified Delphi expert consensus process, this report aims to inform on best practices for TTC delivery for patients following TBI, and to highlight areas of need for further research to improve clinical guidelines in this setting.


Subject(s)
Brain Injuries, Traumatic , Consensus , Delphi Technique , Hypothermia, Induced , Humans , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/complications , Hypothermia, Induced/methods , Hypothermia, Induced/standards , Intensive Care Units/organization & administration , Intracranial Pressure/physiology , Surveys and Questionnaires
13.
Neurol Sci ; 45(3): 1135-1144, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37828386

ABSTRACT

BACKGROUND: Delayed cerebral ischemia (DCI) is a preventable cause of poor neurological outcome in aneurysmal subarachnoid hemorrhage (aSAH). Advances in radiological methods, such as cerebral perfusion computed tomography (CTP), could help diagnose DCI earlier and potentially improve outcomes in aSAH. The objective of this study was to assess whether the use of CTP to diagnose DCI early could reduce the risk of infarction related to DCI. METHODS: Retrospective cohort study of patients in the intensive care unit of Erasme Hospital (Brussels, Belgium) between 2004 and 2021 with aSAH who developed DCI. Patients were classified as: "group 1" - DCI diagnosed based on clinical deterioration or "group 2" - DCI diagnosed using CTP. The primary outcome was the development of infarction unrelated to the initial bleeding or surgery. RESULTS: 211 aSAH patients were diagnosed with DCI during the study period: 139 (66%) in group 1 and 72 (34%) in group 2. In group 1, 109 (78%) patients developed a cerebral infarction, compared to 45 (63%) in group 2 (p = 0.02). The adjusted cumulative incidence of DCI over time was lower in group 2 than in group 1 [hazard ratio 0.65 (95% CI 0.48-0.94); p = 0.02]. The use of CTP to diagnose DCI was not independently associated with mortality or neurological outcome. CONCLUSIONS: The use of CTP to diagnose DCI might help reduce the risk of developing cerebral infarction after aSAH, although the impact of such an approach on patient outcomes needs to be further demonstrated.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods , Cerebral Infarction/etiology , Cerebral Infarction/complications , Brain Ischemia/etiology , Brain Ischemia/complications , Perfusion/adverse effects
14.
Neurocrit Care ; 40(2): 750-758, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37697127

ABSTRACT

BACKGROUND: Cerebral hypoxia is a frequent cause of secondary brain damage in patients with acute brain injury. Although hypercapnia can increase intracranial pressure, it may have beneficial effects on tissue oxygenation. We aimed to assess the effects of hypercapnia on brain tissue oxygenation (PbtO2). METHODS: This single-center retrospective study (November 2014 to June 2022) included all patients admitted to the intensive care unit after acute brain injury who required multimodal monitoring, including PbtO2 monitoring, and who underwent induced moderate hypoventilation and hypercapnia according to the decision of the treating physician. Patients with imminent brain death were excluded. Responders to hypercapnia were defined as those with an increase of at least 20% in PbtO2 values when compared to their baseline levels. RESULTS: On a total of 163 eligible patients, we identified 23 (14%) patients who underwent moderate hypoventilation (arterial partial pressure of carbon dioxide [PaCO2] from 44 [42-45] to 50 [49-53] mm Hg; p < 0.001) during the study period at a median of 6 (4-10) days following intensive care unit admission; six patients had traumatic brain injury, and 17 had subarachnoid hemorrhage. A significant overall increase in median PbtO2 values from baseline (21 [19-26] to 24 [22-26] mm Hg; p = 0.02) was observed. Eight (35%) patients were considered as responders, with a median increase of 7 (from 4 to 11) mm Hg of PbtO2, whereas nonresponders showed no changes (from - 1 to 2 mm Hg of PbtO2). Because of the small sample size, no variable independently associated with PbtO2 response was identified. No correlation between changes in PaCO2 and in PbtO2 was observed. CONCLUSIONS: In this study, a heterogeneous response of PbtO2 to induced hypercapnia was observed but without any deleterious elevations of intracranial pressure.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Retrospective Studies , Hypercapnia/complications , Hypoventilation/complications , Oxygen , Brain , Brain Injuries/therapy , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Intracranial Pressure/physiology
15.
Neurocrit Care ; 40(2): 515-528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37322325

ABSTRACT

BACKGROUND: In acute brain injury (ABI), the effects of hypoxemia as a potential cause of secondary brain damage and poor outcome are well documented, whereas the impact of hyperoxemia is unclear. The primary aim of this study was to assess the episodes of hypoxemia and hyperoxemia in patients with ABI during the intensive care unit (ICU) stay and to determine their association with in-hospital mortality. The secondary aim was to identify the optimal thresholds of arterial partial pressure of oxygen (PaO2) predicting in-hospital mortality. METHODS: We conducted a secondary analysis of a prospective multicenter observational cohort study. Adult patients with ABI (traumatic brain injury, subarachnoid aneurysmal hemorrhage, intracranial hemorrhage, ischemic stroke) with available data on PaO2 during the ICU stay were included. Hypoxemia was defined as PaO2 < 80 mm Hg, normoxemia was defined as PaO2 between 80 and 120 mm Hg, mild/moderate hyperoxemia was defined as PaO2 between 121 and 299 mm Hg, and severe hyperoxemia was defined as PaO2 levels ≥ 300 mm Hg. RESULTS: A total of 1,407 patients were included in this study. The mean age was 52 (±18) years, and 929 (66%) were male. Over the ICU stay, the fractions of patients in the study cohort who had at least one episode of hypoxemia, mild/moderate hyperoxemia, and severe hyperoxemia were 31.3%, 53.0%, and 1.7%, respectively. PaO2 values below 92 mm Hg and above 156 mm Hg were associated with an increased probability of in-hospital mortality. Differences were observed among subgroups of patients with ABI, with consistent effects only seen in patients without traumatic brain injury. CONCLUSIONS: In patients with ABI, hypoxemia and mild/moderate hyperoxemia were relatively frequent. Hypoxemia and hyperoxemia during ICU stay may influence in-hospital mortality. However, the small number of oxygen values collected represents a major limitation of the study.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Hyperoxia , Subarachnoid Hemorrhage , Adult , Humans , Male , Middle Aged , Female , Hyperoxia/etiology , Prospective Studies , Retrospective Studies , Hypoxia/etiology , Oxygen , Brain Injuries/complications , Subarachnoid Hemorrhage/complications , Brain Injuries, Traumatic/complications , Brain
16.
Neurocrit Care ; 40(2): 577-586, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37420137

ABSTRACT

BACKGROUND: Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS: We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS: A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS: Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.


Subject(s)
Intracranial Pressure , Sepsis , Adult , Humans , Male , Young Adult , Female , Blood Pressure/physiology , Retrospective Studies , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Sepsis/complications
17.
Neurocrit Care ; 40(2): 477-485, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37378852

ABSTRACT

Traumatic brain injury (TBI) is a significant public health issue because of its increasing incidence and the substantial short-term and long-term burden it imposes. This burden includes high mortality rates, morbidity, and a significant impact on productivity and quality of life for survivors. During the management of TBI, extracranial complications commonly arise during the patient's stay in the intensive care unit. These complications can have an impact on both mortality and the neurological outcome of patients with TBI. Among these extracranial complications, cardiac injury is a relatively frequent occurrence, affecting approximately 25-35% of patients with TBI. The pathophysiology underlying cardiac injury in TBI involves the intricate interplay between the brain and the heart. Acute brain injury triggers a systemic inflammatory response and a surge of catecholamines, leading to the release of neurotransmitters and cytokines. These substances have detrimental effects on the brain and peripheral organs, creating a vicious cycle that exacerbates brain damage and cellular dysfunction. The most common manifestation of cardiac injury in TBI is corrected QT (QTc) prolongation and supraventricular arrhythmias, with a prevalence up to 5 to 10 times higher than in the general adult population. Other forms of cardiac injury, such as regional wall motion alteration, troponin elevation, myocardial stunning, or Takotsubo cardiomyopathy, have also been described. In this context, the use of ß-blockers has shown potential benefits by intervening in this maladaptive process. ß-blockers can limit the pathological effects on cardiac rhythm, blood circulation, and cerebral metabolism. They may also mitigate metabolic acidosis and potentially contribute to improved cerebral perfusion. However, further clinical studies are needed to elucidate the role of new therapeutic strategies in limiting cardiac dysfunction in patients with severe TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adult , Humans , Quality of Life , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Brain Injuries/complications , Brain Injuries/therapy , Brain , Heart
18.
Neurocrit Care ; 40(1): 349-363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37081276

ABSTRACT

BACKGROUND: Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS: The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS: Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS: Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.


Subject(s)
Brain Injuries , Heart Arrest , Hypoxia-Ischemia, Brain , Humans , Brain , Oxygen , Brain Injuries/therapy , Heart Arrest/therapy , Heart Arrest/complications , Hypoxia-Ischemia, Brain/complications
19.
Neurocrit Care ; 40(2): 633-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37498454

ABSTRACT

BACKGROUND: The aim of this study was to assess the prevalence of delayed deterioration of electroencephalogram (EEG) in patients with cardiac arrest (CA) without early highly malignant patterns and to determine their associations with clinical findings. METHODS: This was a retrospective study of adult patients with CA admitted to the intensive care unit (ICU) of a university hospital. We included all patients with CA who had a normal voltage EEG, no more than 10% discontinuity, and absence of sporadic epileptic discharges, periodic discharges, or electrographic seizures. Delayed deterioration was classified as the following: (1) epileptic deterioration, defined as the appearance, at least 24 h after CA, of sporadic epileptic discharges, periodic discharges, and status epilepticus; or (2) background deterioration, defined as increasing discontinuity or progressive attenuation of the background at least 24 h after CA. The end points were the incidence of EEG deteriorations and their association with clinical features and ICU mortality. RESULTS: We enrolled 188 patients in the analysis. The ICU mortality was 46%. Overall, 30 (16%) patients presented with epileptic deterioration and 9 (5%) patients presented with background deterioration; of those, two patients presented both deteriorations. Patients with epileptic deterioration more frequently had an out-of-hospital CA, and higher time to return of spontaneous circulation and less frequently had bystander resuscitation than others. Patients with background deterioration showed a predominantly noncardiac cause, more frequently developed shock, and had multiple organ failure compared with others. Patients with epileptic deterioration presented with a higher ICU mortality (77% vs. 41%; p < 0.01) than others, whereas all patients with background deterioration died in the ICU. CONCLUSIONS: Delayed EEG deterioration was associated with high mortality rate. Epileptic deterioration was associated with worse characteristics of CA, whereas background deterioration was associated with shock and multiple organ failure.


Subject(s)
Epilepsy , Out-of-Hospital Cardiac Arrest , Shock , Adult , Humans , Cohort Studies , Retrospective Studies , Multiple Organ Failure/complications , Epilepsy/epidemiology , Electroencephalography , Out-of-Hospital Cardiac Arrest/complications
20.
Neurocrit Care ; 40(1): 1-37, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040992

ABSTRACT

The critical care management of patients after cardiac arrest is burdened by a lack of high-quality clinical studies and the resultant lack of high-certainty evidence. This results in limited practice guideline recommendations, which may lead to uncertainty and variability in management. Critical care management is crucial in patients after cardiac arrest and affects outcome. Although guidelines address some relevant topics (including temperature control and neurological prognostication of comatose survivors, 2 topics for which there are more robust clinical studies), many important subject areas have limited or nonexistent clinical studies, leading to the absence of guidelines or low-certainty evidence. The American Heart Association Emergency Cardiovascular Care Committee and the Neurocritical Care Society collaborated to address this gap by organizing an expert consensus panel and conference. Twenty-four experienced practitioners (including physicians, nurses, pharmacists, and a respiratory therapist) from multiple medical specialties, levels, institutions, and countries made up the panel. Topics were identified and prioritized by the panel and arranged by organ system to facilitate discussion, debate, and consensus building. Statements related to postarrest management were generated, and 80% agreement was required to approve a statement. Voting was anonymous and web based. Topics addressed include neurological, cardiac, pulmonary, hematological, infectious, gastrointestinal, endocrine, and general critical care management. Areas of uncertainty, areas for which no consensus was reached, and future research directions are also included. Until high-quality studies that inform practice guidelines in these areas are available, the expert panel consensus statements that are provided can advise clinicians on the critical care management of patients after cardiac arrest.


Subject(s)
Cardiopulmonary Resuscitation , Emergency Medical Services , Heart Arrest , United States , Humans , Cardiopulmonary Resuscitation/methods , American Heart Association , Heart Arrest/therapy , Critical Care/methods
SELECTION OF CITATIONS
SEARCH DETAIL