Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Malar J ; 22(1): 273, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37710252

ABSTRACT

BACKGROUND: Plasmodium falciparum and Plasmodium vivax are coendemic in Ethiopia, with different proportion in different settings. Microscopy is the diagnostic tool in Ethiopian health centres. Accurate species-specific diagnosis is vital for appropriate treatment of cases to interrupt its transmission. Therefore, this study assessed the status of species-specific misdiagnosis by microscope compared with polymerase chain reaction (PCR). METHODS: A health facility based cross-sectional study was conducted from November 2019 to January 2020 in Kolla Shelle Health centre, Arba Minch Zuria district. The study population were suspected malaria cases, who visited the health centre for a diagnosis and treatment. Consecutive microscopy positive cases as well as a sample of microscopically negative cases were included for molecular analysis by polymerase chain reaction (PCR). RESULTS: 254 microscopically negative and 193 microscopically positive malaria suspects were included. Of the 193 malaria positive cases, 46.1% [95% confidence interval (CI) 38.9-53.4] (89/193) were P. falciparum infection, 52.3% (95% CI 45.0-59.5) (101/193) were P. vivax infection, and 1.6% (3/193) had mixed infection of P. falciparum and P. vivax. Of the microscopically positive cases of P. falciparum, 3.4% (3/89) were P. vivax and 11.2% (10/89) were mixed infections with P. falciparum and P. vivax and a single case was negative molecularly. Similarly, of the microscopically positive P. vivax cases, 5.9% (6/101) were P. falciparum and 1% (1/101) was mixed infection. Single case was negative by molecular technique. Of the 254 microscopically negative cases, 0.8% were tested positive for P. falciparum and 2% for P. vivax by PCR. Considering molecular technique as a reference, the sensitivity of microscopy for detecting P. falciparum was 89.2% and for P. vivax, it was 91.2%. The specificity of microscopy for detecting P. falciparum was 96.1% and for P. vivax, it was 97.7%. However, the sensitivity of microscopy in detecting mixed infection of P. falciparum and P. vivax was low (8.3%). CONCLUSION: There were cases left untreated or inappropriately treated due to the species misidentification. Therefore, to minimize this problem, the gaps in the microscopic-based malaria diagnosis should be identified. It is recommended to regularly monitor the competency of malaria microscopists in the study area to improve species identification and diagnosis accuracy.


Subject(s)
Coinfection , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Cross-Sectional Studies , Ethiopia/epidemiology , Malaria/diagnosis , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology
2.
Malar J ; 22(1): 235, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580690

ABSTRACT

BACKGROUND: Urbanization generally improves health outcomes of residents and is one of the potential factors that might contribute to reducing malaria transmission. However, the expansion of Anopheles stephensi, an urban malaria vector, poses a threat for malaria control and elimination efforts in Africa. In this paper, malaria trends in urban settings in Ethiopia from 2014 to 2019 are reported with a focus on towns and cities where An. stephensi surveys were conducted. METHODS: A retrospective study was conducted to determine malaria trends in urban districts using passive surveillance data collected at health facilities from 2014 to 2019. Data from 25 towns surveyed for An. stephensi were used in malaria trend analysis. Robust linear models were used to identify outliers and impute missing and anomalous data. The seasonal Mann-Kendal test was used to test for monotonic increasing or decreasing trends. RESULTS: A total of 9,468,970 malaria cases were reported between 2014 and 2019 through the Public Health Emergency Management (PHEM) system. Of these, 1.45 million (15.3%) cases were reported from urban settings. The incidence of malaria declined by 62% between 2014 and 2018. In 2019, the incidence increased to 15 per 1000 population from 11 to 1000 in 2018. Both confirmed (microscopy or RDT) Plasmodium falciparum (67%) and Plasmodium vivax (28%) were reported with a higher proportion of P. vivax infections in urban areas. In 2019, An. stephensi was detected in 17 towns where more than 19,804 malaria cases were reported, with most of the cases (56%) being P. falciparum. Trend analysis revealed that malaria cases increased in five towns in Afar and Somali administrative regions, decreased in nine towns, and had no obvious trend in the remaining three towns. CONCLUSION: The contribution of malaria in urban settings is not negligible in Ethiopia. With the rapid expansion of An. stephensi in the country, the receptivity is likely to be higher for malaria. Although the evidence presented in this study does not demonstrate a direct linkage between An. stephensi detection and an increase in urban malaria throughout the country, An. stephensi might contribute to an increase in malaria unless control measures are implemented as soon as possible. Targeted surveillance and effective response are needed to assess the contribution of this vector to malaria transmission and curb potential outbreaks.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Humans , Malaria/epidemiology , Malaria/prevention & control , Malaria/diagnosis , Ethiopia/epidemiology , Anopheles/physiology , Retrospective Studies , Mosquito Vectors , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology
3.
BMC Struct Biol ; 19(1): 6, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30917807

ABSTRACT

BACKGROUND: Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is a promising vaccine candidate which has shown strong association with immunogenicity and protectiveness. Its use is however complicated by evolutionary plasticity features which enhance immune evasion. Low complexity regions (LCRs) provide plasticity in surface proteins of Plasmodium species, but its implication in vaccine design remain unexplored. Here population genetic, comparative phylogenetic and structural biology analysis was performed on the gene encoding PvMSP3α. RESULTS: Three LCRs were found in PvMSP3α block II. Both the predicted tertiary structure of the protein and the phylogenetic trees based on this region were influenced by the presence of the LCRs. The LCRs were mainly B cell epitopes within or adjacent. In addition a repeat motif mimicking one of the B cell epitopes was found within the PvMSP3a block II low complexity region. This particular B cell epitope also featured rampant alanine substitutions which might impair antibody binding. CONCLUSION: The findings indicate that PvMSP3α block II possesses LCRs which might confer a strong phenotypic plasticity. The phenomenon of phenotypic plasticity and implication of LCRs in malaria immunology in general and vaccine candidate genes in particular merits further exploration.


Subject(s)
Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Malaria, Vivax/immunology , Plasmodium vivax/isolation & purification , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Amino Acid Substitution , Antigens, Protozoan/genetics , Epitopes, B-Lymphocyte/metabolism , Ethiopia , Humans , Immune Evasion , Malaria, Vivax/parasitology , Models, Molecular , Phylogeny , Plasmodium vivax/immunology , Plasmodium vivax/metabolism , Polymorphism, Genetic , Protein Domains , Protein Structure, Tertiary , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL