Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(19): e2220911120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126681

ABSTRACT

Narcolepsy with cataplexy is a sleep disorder caused by deficiency in the hypothalamic neuropeptide hypocretin/orexin (HCRT), unanimously believed to result from autoimmune destruction of hypocretin-producing neurons. HCRT deficiency can also occur in secondary forms of narcolepsy and be only temporary, suggesting it can occur without irreversible neuronal loss. The recent discovery that narcolepsy patients also show loss of hypothalamic (corticotropin-releasing hormone) CRH-producing neurons suggests that other mechanisms than cell-specific autoimmune attack, are involved. Here, we identify the HCRT cell-colocalized neuropeptide QRFP as the best marker of HCRT neurons. We show that if HCRT neurons are ablated in mice, in addition to Hcrt, Qrfp transcript is also lost in the lateral hypothalamus, while in mice where only the Hcrt gene is inactivated Qrfp is unchanged. Similarly, postmortem hypothalamic tissues of narcolepsy patients show preserved QRFP expression, suggesting the neurons are present but fail to actively produce HCRT. We show that the promoter of the HCRT gene of patients exhibits hypermethylation at a methylation-sensitive and evolutionary-conserved PAX5:ETS1 transcription factor-binding site, suggesting the gene is subject to transcriptional silencing. We show also that in addition to HCRT, CRH and Dynorphin (PDYN) gene promoters, exhibit hypermethylation in the hypothalamus of patients. Altogether, we propose that HCRT, PDYN, and CRH are epigenetically silenced by a hypothalamic assault (inflammation) in narcolepsy patients, without concurrent cell death. Since methylation is reversible, our findings open the prospect of reversing or curing narcolepsy.


Subject(s)
Cataplexy , Narcolepsy , Neuropeptides , Mice , Animals , Orexins/metabolism , Cataplexy/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neuropeptides/metabolism , Narcolepsy/genetics , Hypothalamus/metabolism , Epigenesis, Genetic , Corticotropin-Releasing Hormone/genetics , Corticotropin-Releasing Hormone/metabolism
2.
Mol Psychiatry ; 29(2): 327-341, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123729

ABSTRACT

Hypocretin/Orexin (HCRT/OX) and dopamine (DA) are both key effectors of salience processing, reward and stress-related behaviors and motivational states, yet their respective roles and interactions are poorly delineated. We inactivated HCRT-to-DA connectivity by genetic disruption of Hypocretin receptor-1 (Hcrtr1), Hypocretin receptor-2 (Hcrtr2), or both receptors (Hcrtr1&2) in DA neurons and analyzed the consequences on vigilance states, brain oscillations and cognitive performance in freely behaving mice. Unexpectedly, loss of Hcrtr2, but not Hcrtr1 or Hcrtr1&2, induced a dramatic increase in theta (7-11 Hz) electroencephalographic (EEG) activity in both wakefulness and rapid-eye-movement sleep (REMS). DAHcrtr2-deficient mice spent more time in an active (or theta activity-enriched) substate of wakefulness, and exhibited prolonged REMS. Additionally, both wake and REMS displayed enhanced theta-gamma phase-amplitude coupling. The baseline waking EEG of DAHcrtr2-deficient mice exhibited diminished infra-theta, but increased theta power, two hallmarks of EEG hyperarousal, that were however uncoupled from locomotor activity. Upon exposure to novel, either rewarding or stress-inducing environments, DAHcrtr2-deficient mice featured more pronounced waking theta and fast-gamma (52-80 Hz) EEG activity surges compared to littermate controls, further suggesting increased alertness. Cognitive performance was evaluated in an operant conditioning paradigm, which revealed that DAHcrtr2-ablated mice manifest faster task acquisition and higher choice accuracy under increasingly demanding task contingencies. However, the mice concurrently displayed maladaptive patterns of reward-seeking, with behavioral indices of enhanced impulsivity and compulsivity. None of the EEG changes observed in DAHcrtr2-deficient mice were seen in DAHcrtr1-ablated mice, which tended to show opposite EEG phenotypes. Our findings establish a clear genetically-defined link between monosynaptic HCRT-to-DA neurotransmission and theta oscillations, with a differential and novel role of HCRTR2 in theta-gamma cross-frequency coupling, attentional processes, and executive functions, relevant to disorders including narcolepsy, attention-deficit/hyperactivity disorder, and Parkinson's disease.


Subject(s)
Cognition , Dopaminergic Neurons , Electroencephalography , Orexin Receptors , Wakefulness , Animals , Mice , Dopaminergic Neurons/physiology , Dopaminergic Neurons/metabolism , Cognition/physiology , Orexin Receptors/metabolism , Orexin Receptors/physiology , Wakefulness/physiology , Male , Electroencephalography/methods , Arousal/physiology , Mice, Inbred C57BL , Mice, Knockout , Orexins/metabolism , Orexins/physiology , Sleep, REM/physiology , Signal Transduction/physiology , Theta Rhythm/physiology , Reward , Dopamine/metabolism
3.
Nature ; 566(7744): 383-387, 2019 02.
Article in English | MEDLINE | ID: mdl-30760925

ABSTRACT

Sleep is integral to life1. Although insufficient or disrupted sleep increases the risk of multiple pathological conditions, including cardiovascular disease2, we know little about the cellular and molecular mechanisms by which sleep maintains cardiovascular health. Here we report that sleep regulates haematopoiesis and protects against atherosclerosis in mice. We show that mice subjected to sleep fragmentation produce more Ly-6Chigh monocytes, develop larger atherosclerotic lesions and produce less hypocretin-a stimulatory and wake-promoting neuropeptide-in the lateral hypothalamus. Hypocretin controls myelopoiesis by restricting the production of CSF1 by hypocretin-receptor-expressing pre-neutrophils in the bone marrow. Whereas hypocretin-null and haematopoietic hypocretin-receptor-null mice develop monocytosis and accelerated atherosclerosis, sleep-fragmented mice with either haematopoietic CSF1 deficiency or hypocretin supplementation have reduced numbers of circulating monocytes and smaller atherosclerotic lesions. Together, these results identify a neuro-immune axis that links sleep to haematopoiesis and atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Hematopoiesis/physiology , Sleep/physiology , Animals , Antigens, Ly/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Bone Marrow Cells/metabolism , Female , Hematopoiesis/drug effects , Hypothalamic Area, Lateral/metabolism , Macrophage Colony-Stimulating Factor/biosynthesis , Macrophage Colony-Stimulating Factor/deficiency , Macrophage Colony-Stimulating Factor/metabolism , Male , Mice , Monocytes/drug effects , Monocytes/metabolism , Myelopoiesis/drug effects , Neutrophils/metabolism , Orexin Receptors/deficiency , Orexin Receptors/metabolism , Orexins/biosynthesis , Orexins/deficiency , Orexins/metabolism , Orexins/pharmacology , Sleep/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Sleep Deprivation/prevention & control
4.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452310

ABSTRACT

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Subject(s)
MicroRNAs , Neuropeptides , Animals , Intracellular Signaling Peptides and Proteins/genetics , Mice , MicroRNAs/genetics , Neuropeptides/metabolism , Orexins/genetics , Orexins/metabolism , Sleep/genetics , Wakefulness/genetics , Zebrafish/metabolism
5.
Nature ; 562(7725): 63-68, 2018 10.
Article in English | MEDLINE | ID: mdl-30232458

ABSTRACT

Narcolepsy is a chronic sleep disorder caused by the loss of neurons that produce hypocretin. The close association with HLA-DQB1*06:02, evidence for immune dysregulation and increased incidence upon influenza vaccination together suggest that this disorder has an autoimmune origin. However, there is little evidence of autoreactive lymphocytes in patients with narcolepsy. Here we used sensitive cellular screens and detected hypocretin-specific CD4+ T cells in all 19 patients that we tested; T cells specific for tribbles homologue 2-another self-antigen of hypocretin neurons-were found in 8 out of 13 patients. Autoreactive CD4+ T cells were polyclonal, targeted multiple epitopes, were restricted primarily by HLA-DR and did not cross-react with influenza antigens. Hypocretin-specific CD8+ T cells were also detected in the blood and cerebrospinal fluid of several patients with narcolepsy. Autoreactive clonotypes were serially detected in the blood of the same-and even of different-patients, but not in healthy control individuals. These findings solidify the autoimmune aetiology of narcolepsy and provide a basis for rapid diagnosis and treatment of this disease.


Subject(s)
Autoantigens/immunology , Autoantigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Narcolepsy/immunology , Neurons/immunology , Neurons/metabolism , Orexins/immunology , Orexins/metabolism , Antigens, Viral , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Calcium-Calmodulin-Dependent Protein Kinases/immunology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Case-Control Studies , Cell Separation , Cross Reactions , Humans , Immunologic Memory , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Narcolepsy/blood , Narcolepsy/cerebrospinal fluid , Narcolepsy/diagnosis , Orthomyxoviridae/immunology
6.
Proc Natl Acad Sci U S A ; 116(34): 17061-17070, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31375626

ABSTRACT

Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.


Subject(s)
Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Melanins/metabolism , Neurons/metabolism , Orexins/metabolism , Pituitary Hormones/metabolism , Animals , Hypothalamic Hormones/genetics , Hypothalamus/cytology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Melanins/genetics , Mice , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Orexins/genetics , Pituitary Hormones/genetics
7.
J Sleep Res ; 30(5): e13296, 2021 10.
Article in English | MEDLINE | ID: mdl-33813771

ABSTRACT

Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH.


Subject(s)
Disorders of Excessive Somnolence , Narcolepsy , Cohort Studies , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/etiology , Disorders of Excessive Somnolence/therapy , Humans , Multicenter Studies as Topic , Narcolepsy/diagnosis , Narcolepsy/therapy , Observational Studies as Topic , Prospective Studies , Switzerland
8.
J Sleep Res ; 28(3): e12718, 2019 06.
Article in English | MEDLINE | ID: mdl-29923248

ABSTRACT

Kleine-Levin syndrome (KLS) is a rare periodic hypersomnia with associated behavioural abnormalities but with often favourable prognosis. There is excess risk of KLS in first-degree relatives, suggesting a strong genetic contribution. So far, no mutation is identified in KLS and comprehensive genetic analysis of affected individuals is lacking. Here we performed whole genome single-nucleotide polymorphism (SNP) genotyping and exome sequencing in a large family with seven affected members. The identified gene with a mutation was resequenced in 38 sporadic KLS patients and the expression of the gene product was mapped in the mouse brain. Linkage analysis mapped the disease locus to chromosome 3 and exome analysis identified a heterozygous missense variant in LMOD3 (p.E142D) in the linkage interval. The variant was found to segregate in all affected and one presumably unaffected member of the family. Resequencing LMOD3 in 38 other KLS patients and their families revealed three other low frequency or rare missense variants in seven cases that were inherited with incomplete penetrance. LMOD3 is expressed in the brain and colocalized with major structures involved in the regulation of vigilance states. LMOD proteins are structural proteins and seem to be developmentally regulated. Our findings suggest that KLS might be a structural/neurodevelopmental brain disease.


Subject(s)
Kleine-Levin Syndrome/genetics , Microfilament Proteins/genetics , Nervous System Diseases/genetics , Adolescent , Adult , Animals , Brain/metabolism , Female , Humans , Kleine-Levin Syndrome/metabolism , Male , Mice , Microfilament Proteins/biosynthesis , Microfilament Proteins/metabolism , Nervous System Diseases/metabolism , Polymorphism, Single Nucleotide , Young Adult
9.
Am J Respir Cell Mol Biol ; 58(3): 391-401, 2018 03.
Article in English | MEDLINE | ID: mdl-29077507

ABSTRACT

Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity. Because OSA differs by sex, and the pathophysiology of obstructive events differ in rapid eye movement (REM) and non-REM (NREM) sleep, we hypothesized that additional genetic association signals would be identified by analyzing the NREM/REM-specific AHI and by conducting sex-specific analyses in multiethnic samples. We performed genome-wide association tests for up to 19,733 participants of African, Asian, European, and Hispanic/Latino American ancestry in 7 studies. We identified rs12936587 on chromosome 17 as a possible quantitative trait locus for NREM AHI in men (N = 6,737; P = 1.7 × 10-8) but not in women (P = 0.77). The association with NREM AHI was replicated in a physiological research study (N = 67; P = 0.047). This locus overlapping the RAI1 gene and encompassing genes PEMT1, SREBF1, and RASD1 was previously reported to be associated with coronary artery disease, lipid metabolism, and implicated in Potocki-Lupski syndrome and Smith-Magenis syndrome, which are characterized by abnormal sleep phenotypes. We also identified gene-by-sex interactions in suggestive association regions, suggesting that genetic variants for AHI appear to vary by sex, consistent with the clinical observations of strong sexual dimorphism.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci/genetics , Sleep Apnea, Obstructive/genetics , Sleep, REM/physiology , Transcription Factors/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Phosphatidylethanolamine N-Methyltransferase/genetics , Sex Characteristics , Sterol Regulatory Element Binding Protein 1/genetics , Trans-Activators , ras Proteins/genetics
10.
Brain ; 140(6): 1657-1668, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28460015

ABSTRACT

The sleep disorder narcolepsy with cataplexy is characterized by a highly specific loss of hypocretin (orexin) neurons, leading to the hypothesis that the condition is caused by an immune or autoimmune mechanism. All genetic variants associated with narcolepsy are immune-related. Among these are single nucleotide polymorphisms in the P2RY11-EIF3G locus. It is unknown how these genetic variants affect narcolepsy pathogenesis and whether the effect is directly related to P2Y11 signalling or EIF3G function. Exome sequencing in 18 families with at least two affected narcolepsy with cataplexy subjects revealed non-synonymous mutations in the second exon of P2RY11 in two families, and P2RY11 re-sequencing in 250 non-familial cases and 135 healthy control subjects revealed further six different non-synonymous mutations in the second exon of P2RY11 in seven patients. No mutations were found in healthy controls. Six of the eight narcolepsy-associated P2Y11 mutations resulted in significant functional deficits in P2Y11 signalling through both Ca2+ and cAMP signalling pathways. In conclusion, our data show that decreased P2Y11 signalling plays an important role in the development of narcolepsy with cataplexy.


Subject(s)
Narcolepsy/genetics , Narcolepsy/physiopathology , Receptors, Purinergic P2/genetics , Signal Transduction/genetics , Adult , Cataplexy/genetics , Cataplexy/physiopathology , Exons , Female , Humans , Male , Middle Aged , Mutation, Missense , Pedigree
11.
Ann Neurol ; 79(3): 464-74, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26703954

ABSTRACT

OBJECTIVE: Periodic limb movements during sleep (PLMS) are sleep phenomena characterized by periodic episodes of repetitive stereotyped limb movements. The aim of this study was to describe the prevalence and determinants of PLMS in a middle to older aged general population. METHODS: Data from 2,162 subjects (51.2% women, mean age = 58.4 ± 11.1 years) participating in a population-based study (HypnoLaus, Lausanne, Switzerland) were collected. Assessments included laboratory tests, sociodemographic data, personal and treatment history, and full polysomnography at home. PLMS index (PLMSI) was determined, and PLMSI > 15/h was considered as significant. RESULTS: Prevalence of PLMSI > 15/h was 28.6% (31.3% in men, 26% in women). Compared to subjects with PLMSI ≤ 15/h, subjects with PLMSI > 15/h were older (p < 0.001), were predominantly males (p = 0.007), had a higher proportion of restless legs syndrome (RLS; p < 0.001), had a higher body mass index (p = 0.001), and had a lower mean glomerular filtration rate (p < 0.001). Subjects with PLMSI > 15/h also had a higher prevalence of diabetes, hypertension, and beta-blocker or hypnotic treatments. The prevalence of antidepressant use was higher, but not statistically significant (p = 0.07). Single nucleotide polymorphisms (SNPs) within BTBD9 (rs3923809), TOX3 (rs3104788), and MEIS1 (rs2300478) genes were significantly associated with PLSMI > 15/h. Conversely, mean hemoglobin and ferritin levels were similar in both groups. In the multivariate analysis, age, male gender, antidepressant intake, RLS, and rs3923809, rs3104788, and rs2300478 SNPs were independently associated with PLMSI > 15/h. INTERPRETATION: PLMS are highly prevalent in our middle-aged European population. Age, male gender, RLS, antidepressant treatment, and specific BTBD9, TOX3, and MEIS1 SNP distribution are independent predictors of PLMSI > 15/h.


Subject(s)
Antidepressive Agents/therapeutic use , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Nocturnal Myoclonus Syndrome/diagnosis , Nocturnal Myoclonus Syndrome/epidemiology , Age Distribution , Body Mass Index , Female , Genetic Markers/genetics , Humans , Male , Middle Aged , Nocturnal Myoclonus Syndrome/genetics , Prevalence , Risk Factors , Sex Distribution , Switzerland/epidemiology
12.
J Sleep Res ; 25(3): 356-64, 2016 06.
Article in English | MEDLINE | ID: mdl-26809504

ABSTRACT

Narcolepsy with cataplexy is a rare disease with an estimated prevalence of 0.02% in European populations. Narcolepsy shares many features of rare disorders, in particular the lack of awareness of the disease with serious consequences for healthcare supply. Similar to other rare diseases, only a few European countries have registered narcolepsy cases in databases of the International Classification of Diseases or in registries of the European health authorities. A promising approach to identify disease-specific adverse health effects and needs in healthcare delivery in the field of rare diseases is to establish a distributed expert network. A first and important step is to create a database that allows collection, storage and dissemination of data on narcolepsy in a comprehensive and systematic way. Here, the first prospective web-based European narcolepsy database hosted by the European Narcolepsy Network is introduced. The database structure, standardization of data acquisition and quality control procedures are described, and an overview provided of the first 1079 patients from 18 European specialized centres. Due to its standardization this continuously increasing data pool is most promising to provide a better insight into many unsolved aspects of narcolepsy and related disorders, including clear phenotype characterization of subtypes of narcolepsy, more precise epidemiological data and knowledge on the natural history of narcolepsy, expectations about treatment effects, identification of post-marketing medication side-effects, and will contribute to improve clinical trial designs and provide facilities to further develop phase III trials.


Subject(s)
Databases, Factual , Narcolepsy , Registries , Adolescent , Adult , Aged , Aged, 80 and over , Cataplexy/drug therapy , Cataplexy/epidemiology , Databases, Factual/standards , Europe/epidemiology , Female , Humans , Information Dissemination , Internet , Male , Middle Aged , Narcolepsy/drug therapy , Narcolepsy/epidemiology , Phenotype , Product Surveillance, Postmarketing , Prospective Studies , Quality Control , Rare Diseases/drug therapy , Rare Diseases/epidemiology , Registries/standards , Young Adult
13.
Thorax ; 70(11): 1047-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26294685

ABSTRACT

RATIONALE: Limited-channel portable monitors (PMs) are increasingly used as an alternative to polysomnography (PSG) for the diagnosis of obstructive sleep apnoea (OSA). However, recommendations for the scoring of PM recordings are still lacking. Pulse-wave amplitude (PWA) drops, considered as surrogates for EEG arousals, may increase the detection sensitivity for respiratory events in PM recordings. OBJECTIVES: To investigate the performance of four different hypopnoea scoring criteria, using 3% or 4% oxygen desaturation levels, including or not PWA drops as surrogates for EEG arousals, and to determine the impact of measured versus reported sleep time on OSA diagnosis. METHODS: Subjects drawn from a population-based cohort underwent a complete home PSG. The PSG recordings were scored using the 2012 American Academy of Sleep Medicine criteria to determine the apnoea-hypopnoea index (AHI). Recordings were then rescored using only parameters available on type 3 PM devices according to different hypopnoea criteria and patients-reported sleep duration to determine the 'portable monitor AHIs' (PM-AHIs). MAIN RESULTS: 312 subjects were included. Overall, PM-AHIs showed a good concordance with the PSG-based AHI although it tended to slightly underestimate it. The PM-AHI using 3% desaturation without PWA drops showed the best diagnostic accuracy for AHI thresholds of ≥ 5/h and ≥ 15/h (correctly classifying 94.55% and 93.27% of subjects, respectively, vs 80.13% and 87.50% with PWA drops). There was a significant but modest correlation between PWA drops and EEG arousals (r=0.20, p=0.0004). CONCLUSION: Interpretation of PM recordings using hypopnoea criteria which include 3% desaturation without PWA drops as EEG arousal surrogate showed the best diagnosis accuracy compared with full PSG.


Subject(s)
Computer Peripherals , Polysomnography/instrumentation , Population Surveillance/methods , Sleep Apnea, Obstructive/diagnosis , Sleep/physiology , Adult , Aged , Aged, 80 and over , Equipment Design , Follow-Up Studies , Humans , Middle Aged , Reproducibility of Results , Sleep Apnea, Obstructive/physiopathology
14.
Brain Behav Immun ; 47: 186-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25476601

ABSTRACT

Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1ß on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1ß profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1ß on the expression of Homer1a in neurons.


Subject(s)
Carrier Proteins/metabolism , Cerebral Cortex/drug effects , Chemokines/metabolism , Interleukin-1beta/pharmacology , Neurons/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Animals , Carrier Proteins/genetics , Cell Line , Cerebral Cortex/metabolism , Chemokines/blood , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Homer Scaffolding Proteins , Mice , Neurons/metabolism
15.
Am J Hum Genet ; 89(3): 474-9, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21907016

ABSTRACT

Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score » 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. [corrected].


Subject(s)
Chromosomes, Human, Pair 6/genetics , Genetic Predisposition to Disease/genetics , Models, Molecular , Myelin Proteins/genetics , Narcolepsy/genetics , Animals , Base Sequence , Cell Line , Genes, Dominant/genetics , Genetic Linkage , Genotype , Humans , Lod Score , Mice , Molecular Sequence Data , Mutation, Missense/genetics , Myelin Proteins/chemistry , Myelin-Oligodendrocyte Glycoprotein , Pedigree , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Spain
16.
Brain ; 136(Pt 5): 1592-608, 2013 May.
Article in English | MEDLINE | ID: mdl-23616586

ABSTRACT

Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement-sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram double-blind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5-2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts (∼7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies (∼4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring.


Subject(s)
Cataplexy/diagnosis , Cataplexy/physiopathology , Narcolepsy/diagnosis , Narcolepsy/physiopathology , Theta Rhythm/physiology , Animals , Cataplexy/genetics , Child, Preschool , Electroencephalography/methods , Female , Frontal Lobe/physiopathology , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Narcolepsy/genetics , Species Specificity
17.
J Neurosci ; 32(36): 12506-17, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22956841

ABSTRACT

Although sleep is defined as a behavioral state, at the cortical level sleep has local and use-dependent features suggesting that it is a property of neuronal assemblies requiring sleep in function of the activation experienced during prior wakefulness. Here we show that mature cortical cultured neurons display a default state characterized by synchronized burst-pause firing activity reminiscent of sleep. This default sleep-like state can be changed to transient tonic firing reminiscent of wakefulness when cultures are stimulated with a mixture of waking neurotransmitters and spontaneously returns to sleep-like state. In addition to electrophysiological similarities, the transcriptome of stimulated cultures strikingly resembles the cortical transcriptome of sleep-deprived mice, and plastic changes as reflected by AMPA receptors phosphorylation are also similar. We used our in vitro model and sleep-deprived animals to map the metabolic pathways activated by waking. Only a few metabolic pathways were identified, including glycolysis, aminoacid, and lipids. Unexpectedly large increases in lysolipids were found both in vivo after sleep deprivation and in vitro after stimulation, strongly suggesting that sleep might play a major role in reestablishing the neuronal membrane homeostasis. With our in vitro model, the cellular and molecular consequences of sleep and wakefulness can now be investigated in a dish.


Subject(s)
Action Potentials/physiology , Cerebral Cortex , Sleep/physiology , Wakefulness/physiology , Animals , Cells, Cultured , Cerebral Cortex/chemistry , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Electrophysiological Phenomena/physiology , Female , Male , Mice , Mice, Inbred C57BL , Sleep Deprivation/metabolism
18.
J Sleep Res ; 22(5): 482-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23496005

ABSTRACT

The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU-NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep-onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E-07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E-07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.


Subject(s)
Cataplexy/genetics , Cataplexy/physiopathology , Genome-Wide Association Study , Polysomnography , Adult , Age Factors , Age of Onset , Aging , Body Mass Index , Cataplexy/diagnosis , Cataplexy/psychology , Delayed Diagnosis , Europe , Female , Genetic Predisposition to Disease , Humans , Intracellular Signaling Peptides and Proteins/cerebrospinal fluid , Male , Neuropeptides/cerebrospinal fluid , Orexins , Principal Component Analysis , Retrospective Studies , Sex Characteristics , Sex Factors , Sleep Stages/physiology , Time Factors , Young Adult
19.
Nat Genet ; 34(3): 320-5, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12796782

ABSTRACT

In rodents, the electroencephalogram (EEG) during paradoxical sleep and exploratory behavior is characterized by theta oscillations. Here we show that a deficiency in short-chain acyl-coenzyme A dehydrogenase (encoded by Acads) in mice causes a marked slowing in theta frequency during paradoxical sleep only. We found Acads expression in brain regions involved in theta generation, notably the hippocampus. Microarray analysis of gene expression in mice with mutations in Acads indicates overexpression of Glo1 (encoding glyoxylase 1), a gene involved in the detoxification of metabolic by-products. Administration of acetyl-L-carnitine (ALCAR) to mutant mice significantly recovers slow theta and Glo1 overexpression. Thus, an underappreciated metabolic pathway involving fatty acid beta-oxidation also regulates theta oscillations during sleep.


Subject(s)
Brain/enzymology , Fatty Acid Desaturases/deficiency , Fatty Acids/metabolism , Sleep, REM , Theta Rhythm , Acetylcarnitine/administration & dosage , Acyl-CoA Dehydrogenase , Animals , Disease Models, Animal , Electroencephalography , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Immunoblotting , Immunoenzyme Techniques , In Situ Hybridization , Lactoylglutathione Lyase/metabolism , Liver/enzymology , Male , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Nootropic Agents/administration & dosage , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Sleep, REM/drug effects
20.
Conscious Cogn ; 21(3): 1129-40, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22647346

ABSTRACT

To test whether mental activities collected from non-REM sleep are influenced by REM sleep, we suppressed REM sleep using clomipramine 50mg (an antidepressant) or placebo in the evening, in a double blind cross-over design, in 11 healthy young men. Subjects were awakened every hour and asked about their mental activity. The marked (81%, range 39-98%) REM-sleep suppression induced by clomipramine did not substantially affect any aspects of dream recall (report length, complexity, bizarreness, pleasantness and self-perception of dream or thought-like mentation). Since long, complex and bizarre dreams persist even after suppressing REM sleep either partially or totally, it suggests that the generation of mental activity during sleep is independent of sleep stage.


Subject(s)
Dreams , Sleep Stages , Sleep, REM , Adult , Antidepressive Agents, Tricyclic/pharmacology , Clomipramine/pharmacology , Cross-Over Studies , Double-Blind Method , Dreams/drug effects , Humans , Male , Mental Recall , Polysomnography , Sleep Stages/drug effects , Sleep, REM/drug effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL