Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Neurochem ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702968

ABSTRACT

Ependymal cells form a specialized brain-cerebrospinal fluid (CSF) interface and regulate local CSF microcirculation. It is becoming increasingly recognized that ependymal cells assume a reactive state in response to aging and disease, including conditions involving hypoxia, hydrocephalus, neurodegeneration, and neuroinflammation. Yet what transcriptional signatures govern these reactive states and whether this reactivity shares any similarities with classical descriptions of glial reactivity (i.e., in astrocytes) remain largely unexplored. Using single-cell transcriptomics, we interrogated this phenomenon by directly comparing the reactive ependymal cell transcriptome to the reactive astrocyte transcriptome using a well-established model of autoimmune-mediated neuroinflammation (MOG35-55 EAE). In doing so, we unveiled core glial reactivity-associated genes that defined the reactive ependymal cell and astrocyte response to MOG35-55 EAE. Interestingly, known reactive astrocyte genes from other CNS injury/disease contexts were also up-regulated by MOG35-55 EAE ependymal cells, suggesting that this state may be conserved in response to a variety of pathologies. We were also able to recapitulate features of the reactive ependymal cell state acutely using a classic neuroinflammatory cocktail (IFNγ/LPS) both in vitro and in vivo. Taken together, by comparing reactive ependymal cells and astrocytes, we identified a conserved signature underlying glial reactivity that was present in several neuroinflammatory contexts. Future work will explore the mechanisms driving ependymal reactivity and assess downstream functional consequences.

2.
Cell Mol Biol Lett ; 27(1): 105, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36447138

ABSTRACT

BACKGROUND: Pyrimidine metabolism is critical for tumour progression. Uridine-cytidine kinase 2 (UCK2), a key regulator of pyrimidine metabolism, is elevated during hepatocellular carcinoma (HCC) development and exhibits carcinogenic effects. However, the key mechanism of UCK2 promoting HCC and the therapeutic value of UCK2 are still undefined. The aim of this study is to investigate the potential of UCK2 as a therapeutic target for HCC. METHODS: Gene expression matrices were obtained from public databases. RNA-seq, co-immunoprecipitation and RNA-binding protein immunoprecipitation were used to determine the mechanism of UCK2 promoting HCC. Immune cell infiltration level and immune-related functional scores were evaluated to assess the link between tumour microenvironment and UCK2. RESULTS: In HCC, the expression of UCK2 was upregulated in part by TGFß1 stimulation. UCK2 promoted cell cycle progression of HCC by preventing the degradation of mTOR protein and maintaining the stability of PDPK1 mRNA. We also identified UCK2 as a novel RNA-binding protein. Downregulation of UCK2 induced cell cycle arrest and activated the TNFα/NFκB signalling pathway-related senescence-associated secretory phenotype to modify the tumour microenvironment. Additionally, UCK2 was a biomarker of the immunosuppressive microenvironment. Downregulated UCK2 induced a secretory phenotype, which could improve the microenvironment, and decreased UCK2 remodelling metabolism could lower the resistance of tumour cells to T-cell-mediated killing. CONCLUSIONS: Targeting UCK2 inhibits HCC progression and could improve the response to immunotherapy in patients with HCC. Our study suggests that UCK2 could be an ideal target for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Uridine Kinase , Humans , 3-Phosphoinositide-Dependent Protein Kinases , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/immunology , Immunity/genetics , Immunity/immunology , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Pyrimidines , Tumor Microenvironment , Uridine Kinase/genetics , Uridine Kinase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL