Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Small ; : e2403717, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046075

ABSTRACT

In organic-inorganic hybrid devices, fine interfacial controls by organic components directly affect the device performance. However, fabrication of uniformed interfaces using π-conjugated molecules remains challenging due to facile aggregation by their strong π-π interaction. In this report, a π-conjugated scaffold insulated by covalently linked permethylated α-cyclodextrin moiety with an azido group is synthesized for surface Huisgen cycloaddition on metal oxides. Fourier-transformed infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy confirm the successful immobilization of the insulated azido scaffold on ZnO nanowire array surfaces. Owing to the highly independent immobilization, the scaffold allows rapid and complete conversion of the surface azido group in Huisgen cycloaddition reactions with ethynyl-terminated molecules, as confirmed by FT-IR spectroscopy monitoring. Cyclic voltammetry analysis of modified indium tin oxide substrates shows the positive effects of cyclic insulation toward suppression of intermolecular interaction between molecules introduced by the surface Huisgen cycloaddition reactions. The utility of the scaffold for heterogeneous catalysis is demonstrated in electrocatalytic selective O2 reduction to H2O2 with cobalt(II) chlorin modified fluorine doped tin oxide electrode and photocatalytic H2 generation with iridium(III) dye-sensitized Pt-loaded TiO2 nanoparticle. These results highlight the potential of the insulated azido scaffold for a stepwise functionalization process, enabling precise and well-defined hybrid interfaces.

2.
J Am Chem Soc ; 145(28): 15049-15053, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37410114

ABSTRACT

We synthesized an ion pair comprising cationic and anionic Ir(III) photosensitizers ([Ir1+][Ir2-]) for photocatalytic CO2 reduction and showed that the cationic component imparts stability, while the cyclometalating ligands in the anionic component ensure effective visible-light absorption. The triplet excited state of [Ir1+] is the key photoredox species in this system and is mainly generated through the transfer of triplet excitation energy from the anionic moiety due to Coulombic interactions and appropriate triplet energy alignment between the two ionic components. The positive photosensitization effect of ion pairing was demonstrated by photocatalytic CO2 reduction in cooperation with a Re(I) molecular catalyst incorporated into a vesicle membrane.

3.
J Am Chem Soc ; 145(18): 10236-10248, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37127911

ABSTRACT

Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 µs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.

4.
Inorg Chem ; 60(7): 4891-4903, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33715380

ABSTRACT

A series of novel monocyclometalated [Ir(tpy)(btp)Cl]+ complexes (Ir2-Ir5) were synthesized using 2,2':6',2″-terpyridine (tpy) and 2-(2-pyridyl)benzo[b]thiophene (btp) ligands, as well as their derivatives bearing electron-donating tert-butyl (t-Bu) and electron-withdrawing trifluoromethyl (CF3) groups. Ir2-Ir5 exhibited visible-light absorption stronger than that of the known complex [Ir(tpy)(ppy)Cl]+ (Ir1; ppy = 2-phenylpyridine). Spectroscopic and computational studies revealed that two triplet states were involved in the excited-state dynamics. One is a weakly emissive and short-lived ligand to ligand charge-transfer (LLCT) state originating from the charge transfer from the btp to the tpy ligand. The other is a highly emissive and long-lived ligand-centered (LC) state localized on the btp ligand. Interestingly, the excited state dominant with 3LLCT was completely changed to the 3LC state upon the introduction of substituents on both the tpy and btp ligands. For instance, the excited state of the parent complex Ir2 was weakly emissive (Φ = 2%) and short-lived (τ = 110 ns) in CH2Cl2; conversely, Ir5, fully furnished with t-Bu and CF3 groups, displayed intense phosphorescence with a prolonged lifetime (τ = 14 µs). This difference became increasingly prominent when the solvent was changed to aqueous CH3CN, most probably due to the 3LLCT stabilization. The predominant excited-state nature was switchable between the 3LLCT and 3LC states depending on the substituents employed; this was demonstrated through investigations of Ir3 and Ir4, bearing either the t-Bu or the CF3 group, where the complexes exhibited properties intermediate between those of Ir2 and Ir5. All of the Ir(III) complexes were tested as photosensitizers in photocatalytic H2 evolution over a Co molecular catalyst, and Ir5 outperformed the others, including Ir1, due to improvement in the following key properties: visible-light-absorption ability, excited-state lifetime, and reductive power of the one-electron-reduced species against the catalyst.

5.
Chemistry ; 26(64): 14525-14529, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-32803889

ABSTRACT

This work reports the design of a highly sensitive solid-state sensor device based on a water-gated organic thin-film transistor (WG-OTFT) for the selective detection of herbicide glyphosate (GlyP) in water. A competitive assay among carboxylate-functionalized polythiophene, Cu2+ , and GlyP was employed as a sensing mechanism. Molecular recognition phenomena and electrical double layer (EDL) (at the polymer/water interface) originated from the field-effect worked cooperatively to amplify the sensitivity for GlyP. The limit of detection of WG-OTFT (0.26 ppm) was lower than that of a fluorescence sensor chip (0.95 ppm) which is the conventional sensing method. In contrast to the previously reported insulated molecular wires to block interchain interactions, molecular aggregates under the field-effect has shown to be effective for amplification of sensitivity through "intra"- and "inter"-molecular wire effects. The opposite strategy in this study could pave the way for fully utilizing the sensing properties of polymer-based solid-state sensor devices.


Subject(s)
Herbicides , Water , Fluorescence , Glycine/analogs & derivatives , Glycine/analysis , Glycine/chemistry , Herbicides/chemistry , Glyphosate
6.
Chemistry ; 26(64): 14506, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33053248

ABSTRACT

Invited for the cover of this issue is the group of Tsuyoshi Minami at the University Tokyo. The image illustrates that despite being fabricated with the same polythiophene material, a water-gated organic thin-film transistor is a more sensitive device than a fluorescence sensor chip. Read the full text of the article at 10.1002/chem.202003529.


Subject(s)
Water , Fluorescence , Glycine/analogs & derivatives , Humans , Glyphosate
7.
Chemistry ; 26(69): 16236-16240, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-32633434

ABSTRACT

An artificial tongue that detects astringent components for a comprehensive evaluation of taste has not been established to date. Herein, we first propose fluorescent polythiophene (PT) derivatives (S1-S3) modified with 3-pyridinium boronic acid as supramolecular chemosensors for wine components including astringent procyanidin C1. After numerous attempts for the synthetic conditions, more than 95 mol % of the PT unit was modified with the pyridinium boronic acid moiety. To evaluate the PT derivatives as chemosensors of the artificial tongue, qualitative and quantitative analyses were performed with four types of wine components (i.e., sweet, sour, bitter, and astringent tastes) in combination with pattern recognition models. Notably, procyanidin C1 in the actual wine sample was successfully detected in a quantitative manner. In other words, we have established an authentic artificial tongue using PT based supramolecular chemosensors.

8.
J Org Chem ; 85(6): 4344-4353, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32073264

ABSTRACT

An unprecedented photocatalytic system consisting of benzimidazolium aryloxide betaines (BI+-ArO-) and stoichiometric hydride reducing reagents was developed for carrying out desulfonylation reactions of N-sulfonyl-indoles, -amides, and -amines, and α-sulfonyl ketones. Measurements of absorption spectra and cyclic voltammograms as well as density functional theory (DFT) calculations were carried out to gain mechanistic information. In the catalytic system, visible-light-activated benzimidazoline aryloxides (BIH-ArO-), generated in situ by hydride reduction of the corresponding betaines BI+-ArO-, donate both an electron and a hydrogen atom to the substrates. A modified protocol was also developed so that a catalytic quantity of more easily prepared hydroxyaryl benzimidazolines (BIH-ArOH) is used along with a stoichiometric hydride donor to promote the photochemical desulfonylation reactions.

9.
Anal Chem ; 91(24): 15570-15576, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31714059

ABSTRACT

We believe that "the simpler we are, the more complete we become" is a key concept of chemical sensing systems. In this work, a "turn-on" fluorescence chemosensor array relying on only two self-assembled molecular chemosensors with ability of both qualitative and quantitative detection of phosphorylated saccharides has been developed. The easy-to-prepare chemosensor array was fabricated by in situ mixing of off-the-shelf reagents (esculetin, 4-methylesculetin, and 3-nitrophenylboronic acid). The fluorescence-based saccharide sensing system was carried out using indicator displacement assay accompanied by photoinduced electron transfer (PeT) under various pH conditions. The simultaneous recognition of 14 types of saccharides including glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) was achieved with a successful classification rate of 100%. We also succeeded in the quantitative analysis of a mixture of glucose (Glc), as an original substrate, G6P and F6P, as enzymatic products in pseudoglycolysis pathway. Finally, levels of Glc and F6P in human induced pluripotent stem (hiPS) cells were indirectly monitored by using our proposed chemosensor array. Glc and F6P in supernatants of hiPS cells were classified by linear discriminant analysis as a pattern recognition model and the observed clusters represent the activity of hiPS cells. The results show the high accuracy of the proposed chemosensor array in detection of phosphorylated and similarly modified saccharides.


Subject(s)
Biosensing Techniques/methods , Boronic Acids/chemistry , Fructosephosphates/analysis , Glucose-6-Phosphate/analysis , Glucose/analysis , Induced Pluripotent Stem Cells/metabolism , Cells, Cultured , Fluorescence , Fructosephosphates/chemistry , Glucose/chemistry , Glucose-6-Phosphate/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Phosphorylation
11.
J Org Chem ; 83(7): 3921-3927, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29537851

ABSTRACT

Benzimidazolium naphthoxide (-ONap-BI+) was first synthesized and utilized as an unprecedented betaine photoredox catalyst. Photoexcited state of -ONap-BI+ generated by visible light irradiation catalyzes the reductive deiodination as well as desulfonylation reactions in which 1,3-dimethyl-2-phenylbenzimidazoline (Ph-BIH) cooperates with as an electron and hydrogen atom donor. Significant solvent effects on the reaction progress were discovered, and specific solvation toward imidazolium and naphthoxide moieties of -ONap-BI+ was proposed.

12.
Inorg Chem ; 55(17): 8723-35, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27548036

ABSTRACT

A series of bis-cyclometalated cationic iridium (Ir) complexes were synthesized employing two coumarin 6 ligands and a 2,2'-bipyridine (bpy) with various substituents as new sensitizers, realizing both features of strong visible-light absorption and long-lived excited state. Complexes 2-4, with electron-donating methyl and methoxy groups, absorbed visible light strongly (ε: 126 000-132 000 M(-1) cm(-1)) and exhibited room-temperature phosphorescence with remarkably long lifetimes (21-23 µs) in dichloromethane. In contrast, the excited state of prototype complex 1 without any substituents was short-lived, particularly in highly polar acetonitrile. Phosphorescence of complex 5 with the strong electron-withdrawing CF3 groups was too weak to be detected at room temperature even in less polar dichloromethane. The triplet energies of their coumarin ligand-centered ((3)LC) phosphorescent states were almost invariable, demonstrating that selective tuning of the excited-state lifetime is possible through this "simple chemical modification of the bpy ligand" (we name it the "SCMB" method). The spectroscopic and computational investigations in this study suggest that a potential source of the nonradiative deactivation is a triplet ligand-to-ligand charge-transfer state ((3)LLCT state, coumarin 6 → bpy) and lead us to conclude that the energy level of this dark (3)LLCT state, as well as its thermal population, is largely dependent on the substituents and solvent polarity. In addition, the significant difference in excited-state lifetime was reflected in the photosensitizing ability of complexes 1-5 in visible-light-driven hydrogen generation using sodium ascorbate and a cobalt(III) diglyoxime complex as an electron donor and a water-reduction catalyst, respectively. This study suggests that the SCMB method should be generally effective in controlling the excited state of other bis-cyclometalated cationic Ir(III) complexes.


Subject(s)
Coordination Complexes/chemistry , Coumarins/chemistry , Iridium/chemistry , Photosensitizing Agents/chemistry , Thiazoles/chemistry , 2,2'-Dipyridyl/chemistry , Cations/chemistry , Light , Luminescent Measurements , Models, Molecular
13.
Photochem Photobiol Sci ; 14(10): 1831-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26255622

ABSTRACT

A cationic cyclometallated Ir(III) complex with 1,10-phenanthroline and 2-phenylpyridine ligands photosensitizes the production of singlet oxygen, O2(a(1)Δ(g)), with yields that depend appreciably on the solvent. In water, the quantum yield of photosensitized O2(a(1)Δ(g)) production is small (ϕ(Δ) = 0.036 ± 0.008), whereas in less polar solvents, the quantum yield is much larger (ϕ(Δ) = 0.54 ± 0.05 in octan-1-ol). A solvent effect on ϕ(Δ) of this magnitude is rarely observed and, in this case, is attributed to charge-transfer-mediated processes of non-radiative excited state deactivation that are more pronounced in polar solvents and that kinetically compete with energy transfer to produce O2(a(1)Δ(g)). A key component of this non-radiative deactivation process, electronic-to-vibrational energy transfer, is also manifested in pronounced H2O/D2O isotope effects that indicate appreciable coupling between the Ir(III) complex and water. This Ir(III) complex is readily incorporated into HeLa cells and, upon irradiation, is cytotoxic as a consequence of the O2(a(1)Δ(g)) thus produced. The data reported herein point to a pervasive problem in mechanistic studies of photosensitized O2(a(1)Δ(g))-mediated cell death: care must be exercised when interpreting the effective cytotoxicity of O2(a(1)Δ(g)) photosensitizers whose photophysical properties depend strongly on the local environment. Specifically, the photophysics of the sensitizer in bulk solutions may not accurately reflect its intracellular behavior, and the control and quantification of the O2(a(1)Δ(g)) "dose" can be difficult in vivo.


Subject(s)
Iridium/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Solvents/chemistry , Cell Death/drug effects , Cell Death/radiation effects , HeLa Cells , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Intracellular Space/radiation effects , Organometallic Compounds/metabolism , Phenanthrolines/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Pyridines/chemistry , Signal Transduction/drug effects , Signal Transduction/radiation effects
14.
Photochem Photobiol Sci ; 13(4): 691-702, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24549095

ABSTRACT

We report a novel system of visible-light-driven CO2 reduction to CO in an aqueous solution, in which DPPC vesicles dispersed in the solution act as a photocatalyst using ascorbate (HAsc(-)) as an electron source. In the vesicles metal complexes [Ru(dtb)(bpy)2](2+) and Re(dtb)(CO)3Cl (dtb = 4,4'-ditridecyl-2,2'-bipyridyl) are incorporated, which act as a photosensitizer and a catalyst for CO2 reduction, respectively. The reaction is initiated with the reductive quenching of the (3)MLCT excited state of the Ru complex with HAsc(-), followed by an electron transfer from the reduced Ru complex to the Re complex to give a one-electron reduced Re species having catalytic ability for CO2 reduction. In order to search for optimum conditions for the CO production, the dependence of the initial rate of CO formation, vi, on the concentration of the metal complexes and HAsc(-) in the vesicle solution was examined. Consequently, we obtained ∼3.5 µmol h(-1) and 190 for vi and the turnover number for CO formation with respect to the Re catalyst, respectively. On the basis of the dependence of vi on the incident light intensity, we have concluded that the photocatalytic reduction of CO2 to CO with HAsc(-) in this system requires only one photon, and propose that HAsc(-) donates an electron not only to the excited state of the Ru complex, but also to the Re-CO2 adduct involved in the catalytic cycle for CO2 reduction.

15.
Inorg Chem ; 53(6): 2983-95, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24568295

ABSTRACT

Bis-cyclometalated cationic iridium (Ir) complexes 1-4 comprising two 2-(2-pyridyl)benzo[b]thiophene (btp) ligands and one 2,2'-bipyridyl (bpy) ancillary ligand with different substituents were prepared as new visible light-absorbing sensitizers and examined for their photophysical and electrochemical properties. Complex 1 was prepared as a parent complex without any substituents. Complexes 2-4 contained methyl-, methoxy-, and trifluoromethyl groups at 4,4'-positions on the bpy ancillary ligand. Systematic investigation of these complexes revealed that such a simple chemical modification selectively controls the excited-state lifetime, while the absorption and emission spectral features remain unchanged. Specifically, the phosphorescence lifetimes of complexes 2 and 3 with electron-donating groups (τ = 3.50 µs, 3.90 µs) were found to be much longer than that of complex 1 (τ = 0.273 µs), and complex 4, possessing strong electron-withdrawing trifluoromethyl groups, did not exhibit detectable phosphorescence at room temperature. The large differences in excited-state lifetimes of complexes 1-3, as well as the nonemissive character of complex 4, are attributed to a strong influence of the substituents on the ligand field strength. The increased σ-donating ability of the ancillary ligand in complexes 2 and 3 destabilizes a short-lived, nonemissive triplet metal-centered ((3)MC) state and increases the energy separation between the (3)MC state and emissive triplet ligand-centered ((3)LC) state based on the btp ligand. For complex 4, however, the (3)MC state is close in energy to the (3)LC state because of the decreased σ-donating ability of the ancillary ligand. Additional evidence of the (3)MC state associated with the changeable excited state was also provided via low-temperature phosphorescence measurements and density functional theory calculations. Ir complexes 1-4 were tested as sensitizers in photoinduced electron-transfer reaction of triethanolamine and methylviologen chloride (MVCl2). As a result, complexes 2 and 3 exhibited much better photosensitizing property compared to complex 1 since their long-lived excited states promoted an oxidative quenching pathway. This Study has first demonstrated that simple substitution on the diimine ancillary ligand can control the (3)MC state of the bis-cyclometalated cationic Ir complex to finely tune the excited-state lifetime and photosensitizing property.


Subject(s)
Iridium/chemistry , Photosensitizing Agents/chemistry , Thiophenes/chemistry , Cations , Spectrophotometry, Ultraviolet
16.
Chem Sci ; 15(23): 8873-8879, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873064

ABSTRACT

2,2'-Bipyridine has been identified as a privileged ligand scaffold for photofunctional transition metal complexes. We herein report on the synthesis and photoproperties of an insulated π-conjugated 2,2'-bipyridine with a linked rotaxane structure consisting of permethylated α-cyclodextrin (PM α-CD) and oligo(p-phenylene ethynylene). The insulated π-conjugated 2,2'-bipyridine exhibited enhanced ligand performance in the solid-state emitting biscyclometalated Ir complexes and visible-light-driven Ni catalysts owing to π-extension and remote steric effects based on the linked rotaxane structure.

17.
ACS Appl Mater Interfaces ; 15(22): 27277-27284, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37226704

ABSTRACT

Dye-sensitized H2 evolution photocatalysts have attracted considerable attention as promising systems for the photochemical generation of H2 from water. In this study, to mimic the reaction field of natural photosynthesis artificially, we synthesized a hydrophobic Ru(II) dye-sensitized Pt-TiO2 nanoparticle photocatalyst, RuC9@Pt-TiO2 (RuC9 = [Ru(dC9bpy)2(H4dmpbpy)]2+; dC9bpy = 4,4'-dinonyl-2,2'-bipyridine, H4dmpbpy = 4,4'-dimethyl phosphonic acid-2,2'-bipyridine), and integrated it into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer vesicle membranes. The photocatalytic H2 production activity in 0.5 M l-ascorbic acid aqueous solution enhanced by more than three times in the presence of DPPC vesicles (apparent quantum yield = 2.11%), whereas such a significant enhancement was hardly observed when the vesicle formation was omitted. These results indicate that the highly dispersed state of the hydrophobic RuC9@Pt-TiO2 nanoparticles in the DPPC bilayer vesicles is a key factor in achieving enhanced photocatalytic H2 production activity in aqueous solution.

18.
Chem Commun (Camb) ; 59(50): 7747-7750, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37272870

ABSTRACT

A self-assembled chemosensor prepared using off-the-shelf materials has shown various fluorescence responses including ratiometric and simple ON-OFF switching profiles by adding different toxic metal ions. The unique fingerprint-like responses have been applied to pattern recognition of metal ions in river water for environmental analysis.

19.
Chem Asian J ; 18(16): e202300372, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37309739

ABSTRACT

Herein, we propose a novel amphiphilic polythiophene-based chemosensor functionalized with a Zn(II)-dipicolylamine side chain (1poly ⋅ Zn) for the pattern recognition of oxyanions. Optical changes in amphiphilic 1poly ⋅ Zn can be induced by the formation of a random coil from a backbone-planarized structure upon the addition of target oxyanions, which results in blueshifts in the UV-vis absorption spectra and turn-on-type fluorescence responses. Dynamic behavior in a polythiophene wire and/or among wires could be a driving force for obtaining visible color changes, while the molecular wire effect is dominant in obtaining fluorescence sensor responses. Notably, the magnitude of optical changes in 1poly ⋅ Zn has depended on differences in properties of oxyanions, such as their binding affinity, hydrophilicity, and molecular geometry. Thus, various colorimetric and fluorescence response patterns of 1poly ⋅ Zn to oxyanions were obtained, albeit using a single chemosensor. A constructed information-rich dataset was applied to pattern recognition for the simultaneous group categorization of phosphate and carboxylate groups and the prediction of similar structural oxyanions at a different order of concentrations in their mixture solutions.

20.
Dalton Trans ; 51(24): 9467-9476, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35678270

ABSTRACT

Photocatalytic molecular conversions that lead to value-added chemicals are of considerable interest. To achieve highly efficient photocatalytic reactions, it is equally important as it is challenging to construct systems that enable effective charge separation. Here, we demonstrate that the rational construction of a biphasic solution system with a ferrocenium/ferrocene (Fc+/Fc) redox couple enables efficient photocatalysis by spatial charge separation using the liquid-liquid interface. In a single-phase system, exposure of a 1,2-dichloroethane (DCE) solution containing a Ru(II)- or Ir(III)-based photosensitizer, Fc, and benzyl bromide (Bn-Br) to visible-light irradiation failed to generate any product. However, the photolysis in a H2O/DCE biphasic solution, where the compounds are initially distributed in the DCE phase, facilitated the reductive coupling of Bn-Br to dibenzyl (Bn2) using Fc as an electron donor. The key result of this study is that Fc+, generated by photooxidation of Fc in the DCE phase, migrates to the aqueous phase due to the drastic change in its partition coefficient compared to that of Fc. This liquid-liquid phase migration of the mediator is essential for facilitating the reduction of Bn-Br in the DCE phase as it suppresses backward charge recombination. The co-existence of anions can further modify the driving force of phase migration of Fc+ depending on their hydrophilicity; the best photocatalytic activity was obtained with a turnover frequency of 79.5 h-1 and a quantum efficiency of 0.2% for the formation of Bn2 by adding NBu4+Br- to the biphasic solution. This study showcases a potential approach for rectifying electron transfer with suppressed charge recombination to achieve efficient photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL