Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542956

ABSTRACT

Natural products, particularly medicinal plants, are crucial in combating cancer and aiding in the discovery and development of new therapeutic agents owing to their biologically active compounds. They offer a promising avenue for developing effective anticancer medications because of their low toxicity, diverse chemical structures, and ability to target various cancers. Allicin is one of the main ingredients in garlic (Allium sativum L.). It is a bioactive sulfur compound maintained in various plant sections in a precursor state. Numerous studies have documented the positive health benefits of this natural compound on many chronic conditions, including gastric, hepatic, breast, lung, cervical, prostate, and colon cancer. Moreover, allicin may target several cancer hallmarks or fundamental biological traits and functions that influence cancer development and spread. Cancer hallmarks include sustained proliferation, evasion of growth suppressors, metastasis, replicative immortality, angiogenesis, resistance to cell death, altered cellular energetics, and immune evasion. The findings of this review should provide researchers and medical professionals with a solid basis to support fundamental and clinical investigations of allicin as a prospective anticancer drug. This review outlines the anticancer role of allicin in each hallmark of cancer.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Garlic , Plants, Medicinal , Male , Humans , Plant Extracts/chemistry , Prospective Studies , Sulfinic Acids/chemistry , Disulfides , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Colonic Neoplasms/drug therapy , Garlic/chemistry
2.
Molecules ; 29(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543009

ABSTRACT

Epigallocatechin gallate (EGCG) is a catechin, which is a type of flavonoid found in high concentrations in green tea. EGCG has been studied extensively for its potential health benefits, particularly in cancer. EGCG has been found to exhibit anti-proliferative, anti-angiogenic, and pro-apoptotic effects in numerous cancer cell lines and animal models. EGCG has demonstrated the ability to interrupt various signaling pathways associated with cellular proliferation and division in different cancer types. EGCG anticancer activity is mediated by interfering with various cancer hallmarks. This article summarize and highlight the effects of EGCG on cancer hallmarks and focused on the impacts of EGCG on these cancer-related hallmarks. The studies discussed in this review enrich the understanding of EGCG's potential as a therapeutic tool against cancer, offering a substantial foundation for scientists and medical experts to advance scientific and clinical investigations regarding EGCG's possibility as a potential anticancer treatment.


Subject(s)
Catechin , Catechin/analogs & derivatives , Neoplasms , Animals , Catechin/pharmacology , Catechin/therapeutic use , Neoplasms/drug therapy , Cell Proliferation , Signal Transduction , Tea
3.
Curr Opin Clin Nutr Metab Care ; 26(4): 369-376, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37265176

ABSTRACT

PURPOSE OF REVIEW: This review presents details about types of ketogenic diet (KD), anticancer mechanisms, and the use of KD in experimental and clinical studies. Studies summarized in this review provide a solid ground for researchers to consider the use of KD to augment conventional treatments. RECENT FINDINGS: KD is a dietary pattern composed of high fat, moderate proteins, and very-low-carbohydrate. This diet was suggested to have an anticancer effect and to augment conventional anticancer therapies. KD can target cancer cell by interfering with its metabolism without harming normal cells. SUMMARY: Several experimental and clinical studies support the use of KD as adjuvant therapy to treat different cancers.


Subject(s)
Diet, Ketogenic , Neoplasms , Humans , Diet, Carbohydrate-Restricted , Neoplasms/therapy , Dietary Carbohydrates
4.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080219

ABSTRACT

Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Neoplasms/drug therapy , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
5.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956766

ABSTRACT

Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Transformation, Neoplastic , Humans , Neoplasms/drug therapy , Plant Extracts/pharmacology
6.
Curr Issues Mol Biol ; 43(2): 558-589, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34287243

ABSTRACT

Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.


Subject(s)
Diet, Ketogenic , Neoplasms/diet therapy , Neoplasms/prevention & control , Animals , Biomarkers , Disease Management , Disease Susceptibility , Eating , Energy Metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Metabolic Networks and Pathways , Neoplasms/epidemiology , Neoplasms/etiology , Signal Transduction , Treatment Outcome
7.
Molecules ; 26(3)2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33572627

ABSTRACT

Diabetes is a global health problem, and the number of diabetic patients is in continuous rise. Conventional antidiabetic therapies are associated with high costs and limited efficiency. The use of traditional medicine and plant extracts to treat diabetes is gaining high popularity in many countries. Countries in the Middle East region have a long history of using herbal medicine to treat different diseases, including diabetes. In this review, we compiled and summarized all the in vivo and in vitro studies conducted for plants with potential antidiabetic activity in the Middle East region. Plants of the Asteraceae and Lamiaceae families are the most investigated. It is hoped that this review will contribute scientifically to evidence the ethnobotanical use of medicinal plants as antidiabetic agents. Work has to be done to define tagetes, mechanism of action and the compound responsible for activity. In addition, safety and pharmacokinetic parameters should be investigated.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Plants, Medicinal/chemistry , Animals , Humans , Hypoglycemic Agents/therapeutic use , Medicine, Traditional , Middle East
8.
Molecules ; 26(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923028

ABSTRACT

Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.


Subject(s)
Cell Proliferation/drug effects , Drug-Related Side Effects and Adverse Reactions/drug therapy , Melatonin/therapeutic use , Neoplasms/drug therapy , Apoptosis/drug effects , Humans , Neoplasm Metastasis , Neoplasms/pathology , Neoplasms/radiotherapy , Radiotherapy/adverse effects
9.
Molecules ; 26(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920079

ABSTRACT

Cancer is considered the second leading cause of death worldwide and in 2018 it was responsible for approximately 9.6 million deaths. Globally, about one in six deaths are caused by cancer. A strong correlation was found between diabetes mellitus and carcinogenesis with the most evident correlation was with type 2 diabetes mellitus (T2DM). Research has proven that elevated blood glucose levels take part in cell proliferation and cancer cell progression. However, limited studies were conducted to evaluate the efficiency of conventional therapies in diabetic cancer patients. In this review, the correlation between cancer and diabetes will be discussed and the mechanisms by which the two diseases interact with each other, as well as the therapeutics challenges in treating patients with diabetes and cancer with possible solutions to overcome these challenges. Natural products targeting both diseases were discussed with detailed mechanisms of action. This review will provide a solid base for researchers and physicians to test natural products as adjuvant alternative therapies to treat cancer in diabetic patients.


Subject(s)
Biological Products/therapeutic use , Carcinogenesis/drug effects , Diabetes Mellitus, Type 2/diet therapy , Neoplasms/diet therapy , Blood Glucose/genetics , Carcinogenesis/genetics , Cell Proliferation/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Insulin Resistance/genetics , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress/drug effects
10.
Molecules ; 25(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961987

ABSTRACT

Resveratrol (3,4',5 trihydroxystilbene) is a naturally occurring non-flavonoid polyphenol. It has various pharmacological effects including antioxidant, anti-diabetic, anti-inflammatory and anti-cancer. Many studies have given special attention to different aspects of resveratrol anti-cancer properties and proved its high efficiency in targeting multiple cancer hallmarks. Tumor microenvironment has a critical role in cancer development and progression. Tumor cells coordinate with a cast of normal cells to aid the malignant behavior of cancer. Many cancer supporting players were detected in tumor microenvironment. These players include blood and lymphatic vessels, infiltrating immune cells, stromal fibroblasts and the extracellular matrix. Targeting tumor microenvironment components is a promising strategy in cancer therapy. Resveratrol with its diverse biological activities has the capacity to target tumor microenvironment by manipulating the function of many components surrounding cancer cells. This review summarizes the targets of resveratrol in tumor microenvironment and the mechanisms involved in this targeting. Studies discussed in this review will participate in building a solid ground for researchers to have more insight into the mechanism of action of resveratrol in tumor microenvironment.


Subject(s)
Neoplasms/drug therapy , Resveratrol/therapeutic use , Tumor Microenvironment , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cytokines/metabolism , Humans , Neoplasms/pathology , Neoplasms/prevention & control , Reactive Oxygen Species/metabolism , Resveratrol/chemistry , Tumor-Associated Macrophages/cytology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Vascular Endothelial Growth Factor A/metabolism
11.
Molecules ; 25(22)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202681

ABSTRACT

Cancer is one of the main causes of death globally and considered as a major challenge for the public health system. The high toxicity and the lack of selectivity of conventional anticancer therapies make the search for alternative treatments a priority. In this review, we describe the main plant-derived natural products used as anticancer agents. Natural sources, extraction methods, anticancer mechanisms, clinical studies, and pharmaceutical formulation are discussed in this review. Studies covered by this review should provide a solid foundation for researchers and physicians to enhance basic and clinical research on developing alternative anticancer therapies.


Subject(s)
Biological Products/therapeutic use , Drug Compounding , Neoplasms/drug therapy , Plants/chemistry , Research , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Humans
12.
Molecules ; 25(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937891

ABSTRACT

The release of reactive oxygen species (ROS) and oxidative stress is associated with the development of many ailments, including cardiovascular diseases, diabetes and cancer. The causal link between oxidative stress and cancer is well established and antioxidants are suggested as a protective mechanism against cancer development. Recently, an increase in the consumption of antioxidant supplements was observed globally. The main sources of these antioxidants include fruits, vegetables, and beverage. Herbal infusions are highly popular beverages consumed daily for different reasons. Studies showed the potent antioxidant effects of plants used in the preparation of some herbal infusions. Such herbal infusions represent an important source of antioxidants and can be used as a dietary protection against cancer. However, uncontrolled consumption of herbal infusions may cause toxicity and reduced antioxidant activity. In this review, eleven widely consumed herbal infusions were evaluated for their antioxidant capacities, anticancer potential and possible toxicity. These herbal infusions are highly popular and consumed as daily drinks in different countries. Studies discussed in this review will provide a solid ground for researchers to have better understanding of the use of herbal infusions to reduce oxidative stress and as protective supplements against cancer development.


Subject(s)
Dietary Supplements/adverse effects , Neoplasms/metabolism , Neoplasms/prevention & control , Oxidative Stress/drug effects , Plant Preparations/adverse effects , Plant Preparations/therapeutic use , Animals , Anticarcinogenic Agents/therapeutic use , Antioxidants/therapeutic use , Beverages , Cell Line, Tumor , Diet , Fruit , Humans , Reactive Oxygen Species , Vegetables
13.
Molecules ; 23(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495398

ABSTRACT

Melatonin is a natural indoleamine produced by the pineal gland that has many functions, including regulation of the circadian rhythm. Many studies have reported the anticancer effect of melatonin against a myriad of cancer types. Cancer hallmarks include sustained proliferation, evading growth suppressors, metastasis, replicative immortality, angiogenesis, resisting cell death, altered cellular energetics, and immune evasion. Melatonin anticancer activity is mediated by interfering with various cancer hallmarks. This review summarizes the anticancer role of melatonin in each cancer hallmark. The studies discussed in this review should serve as a solid foundation for researchers and physicians to support basic and clinical studies on melatonin as a promising anticancer agent.


Subject(s)
Melatonin/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Angiogenesis Inhibitors , Animals , Antineoplastic Agents/pharmacology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Disease Progression , Genomic Instability , Humans , Melatonin/chemistry , Melatonin/genetics , Melatonin/pharmacology , Metabolic Networks and Pathways , Neoplasms/pathology , Neovascularization, Pathologic , Signal Transduction/drug effects , Tumor Escape
14.
Saudi Pharm J ; 26(7): 1022-1026, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30416358

ABSTRACT

The objective of this research was to investigate the effect of polymer length on the in vitro characteristics of thymoquinone-melatonin (TQ-MLT) when loaded into our previously prepared targeted drug delivery system (TDDS). Our system constructed from silica nanoparticles (NPs) and modified with diamine polymer (D4000), carboxymethyl-ß-cyclodextrin (CM-ß-CD) and folic acid (FA), respectively. In this study, three other different lengths of polymers (D230, D400 and D2000) were used and compared to D4000. The surface modification was characterized using fourier transform infrared spectroscopy (FTIR) and the mean particle size as well as polydispersity (PD) was measured using dynamic light scattering (DLS). The results, in general, showed that the release rate increases as the polymer length decreases. Also, shorter polymers showed an obvious burst release of most of the drug within the first hour. On the other hand, longer polymers exhibited a more sustained release in a pulsatile manner, with two moderate drug burst patterns occurred within the first and the last few hours. The in vitro cell viability assay showed that the percentage of cell toxicity toward HeLa cells increases with increasing the polymer length.

15.
Semin Cancer Biol ; 35 Suppl: S199-S223, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25865775

ABSTRACT

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.


Subject(s)
Carcinogenesis/drug effects , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Tumor Microenvironment/genetics , Antineoplastic Agents/therapeutic use , Carcinogenesis/genetics , Cell Proliferation/drug effects , Humans , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/prevention & control , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/prevention & control , Signal Transduction , Tumor Microenvironment/drug effects
16.
Semin Cancer Biol ; 35 Suppl: S185-S198, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25818339

ABSTRACT

Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.


Subject(s)
Carcinogenesis/immunology , Immune Evasion , Neoplasms/immunology , Neoplasms/therapy , Antigen Presentation/immunology , Carcinogenesis/drug effects , Humans , Immune Tolerance/drug effects , Immune Tolerance/immunology , Neoplasms/pathology , Phytochemicals/therapeutic use , T-Lymphocytes, Regulatory/immunology , Tumor Escape/drug effects , Tumor Escape/immunology
17.
Sci Rep ; 14(1): 7126, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531887

ABSTRACT

Probiotics are a mixture of beneficial live bacteria and/or yeasts that naturally exist in our bodies. Recently, numerous studies have focused on the immunostimulatory effects of single-species or killed multi-species probiotic conditioned mediums on macrophages. This study investigates the immunostimulatory effect of commercially available active, multi-species probiotic conditioned medium (CM) on RAW264.7 murine macrophages. The probiotic CM was prepared by culturing the commercially available probiotic in a cell-culture medium overnight at 37 °C, followed by centrifugation and filter-sterilization to be tested on macrophages. The immunostimulatory effect of different dilution percentages (50%, 75%, 100%) of CM was examined using the MTT assay, proinflammatory cytokine (tumor necrosis factor TNF-alpha) production in macrophages, migration, and phagocytosis assays. For all the examined CM ratios, the percentages of cell viability were > 80%. Regarding the migration scratch, TNF-alpha and phagocytosis assays, CM demonstrated a concentration-dependent immunostimulatory effect. However, the undiluted CM (100%) showed a significant (p-value < 0.05) stimulatory effect compared to the positive and negative controls. The findings suggest that the secretions and products of probiotics, as measured in the CM, may be closely associated with their immune-boosting effects. Understanding this relationship between probiotic secretions and immune function is crucial for further exploring the potential benefits of probiotics in enhancing overall health and well-being.


Subject(s)
Probiotics , Tumor Necrosis Factor-alpha , Mice , Animals , Culture Media, Conditioned/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Macrophages , Immunity , Probiotics/pharmacology
18.
Plants (Basel) ; 13(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38202341

ABSTRACT

Breast cancer stands out as a particularly challenging form of cancer to treat among various types. Traditional treatment methods have been longstanding approaches, yet their efficacy has diminished over time owing to heightened toxicity, adverse effects, and the emergence of multi-drug resistance. Nevertheless, a viable solution has emerged through the adoption of a complementary treatment strategy utilizing natural substances and the incorporation of intermittent fasting to enhance therapeutic outcomes. This study aimed to assess the anticancer activity of thymoquinone (TQ), intermittent fasting, and their combination using in vivo and in vitro methods. The anti-proliferative activity of TQ and fasting (glucose/serum restriction) were evaluated against the T47D, MDA-MB-231, and EMT6 cell lines and compared to normal cell lines (Vero) using the MTT colorimetric assay method. Additionally, this study aimed to determine the half-maximal inhibitory concentration (IC50) of TQ. For the in vivo experiment, the antitumor activity of TQ and intermittent fasting (IF) was assessed by measuring the tumor sizes using a digital caliper to determine the change in the tumor size and survival rates. At the molecular level, the serum levels of glucose, ß-hydroxybutyrate (ß-HB), leptin, and insulin growth factor-1 (IGF-1) were measured using standard kits. Additionally, the aspartate transaminase (AST), alanine transaminase (ALT), and creatinine serum levels were measured. The inhibition of the breast cancer cell lines was achieved by TQ. TQ and intermittent fasting both had an additional anticancer effect against breast tumors inoculated in mice. The combination therapy was evaluated and found to significantly reduce the tumor size, with a change in tumor size of -57.7%. Additionally, the combination of TQ and IF led to a decrease in the serum levels of glucose, IGF-1 (24.49 ng/mL) and leptin (1.77 ng/mL) while increasing ß-hydroxybutyrate in the mice given combination therapy (200.86 nM) with no toxicity on the liver or kidneys. In the mice receiving combination therapy, TQ and IF treated breast cancer in an additive way without causing liver or kidney toxicity due to decreased levels of glucose, IGF-1, and leptin and increased levels of ß-hydroxybutyrate. Further investigation is required to optimize the doses and determine the other possible mechanisms exhibited by the novel combination.

19.
Plants (Basel) ; 13(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202350

ABSTRACT

Carthamus oxyacantha M.Bieb is a promising repository of active phytochemicals. These bioactive compounds work synergistically to promote the plant's antioxidant, anticancer, and immunomodulatory capabilities. The present study aimed to discover the potential immunomodulatory and cytotoxicity of different extracts of Carthamus oxycantha roots. Aqueous ethanol (70%), aqueous methanol (90%), ethyl acetate, and n-hexane extracts were tested against five cell lines (T47D, MDA-MB231, Caco-2, EMT6/P, and Vero). Among these extracts, ethyl acetate and n-hexane extracts showed significant activity in inhibiting the proliferation of cancerous cells because of the presence of several phytochemical compounds, including flavonoids, phenolics, and alkaloids. The n-hexane extract was the most potent extract against T47D and Caco-2 cell lines and had IC50 values of 0.067 mg/mL and 0.067 mg/mL, respectively. In comparison, ethyl acetate extract was active against T47D and MDAMB231, and IC50 values were 0.0179 mg/mL and 0.03 mg/mL, respectively. Both n-hexane and ethyl acetate extracts reduced tumor size (by 49.981% and 51.028%, respectively). Remarkably, Carthamus oxyacantha extracts decreased the average weight of the tumor cells in the in vivo model. The plant induced significant apoptotic activity by the activation of caspase-3, immunomodulation of macrophages, and triggering of pinocytosis. The implications of these intriguing findings demand additional research to broaden the scope of the understanding of this field, opening the doors to the possibilities of using Carthamus oxyacantha M.Bieb as an effective cancer treatment adjuvant in the future.

20.
Front Nutr ; 10: 1281879, 2023.
Article in English | MEDLINE | ID: mdl-38274206

ABSTRACT

Cancer, a leading global cause of mortality, arises from intricate interactions between genetic and environmental factors, fueling uncontrolled cell growth. Amidst existing treatment limitations, vitamins have emerged as promising candidates for cancer prevention and treatment. This review focuses on Vitamins A, C, E, and D because of their protective activity against various types of cancer. They are essential as human metabolic coenzymes. Through a critical exploration of preclinical and clinical studies via PubMed and Google Scholar, the impact of these vitamins on cancer therapy was analyzed, unraveling their complicated mechanisms of action. Interestingly, vitamins impact immune function, antioxidant defense, inflammation, and epigenetic regulation, potentially enhancing outcomes by influencing cell behavior and countering stress and DNA damage. Encouraging clinical trial results have been observed; however, further well-controlled studies are imperative to validate their effectiveness, determine optimal dosages, and formulate comprehensive cancer prevention and treatment strategies. Personalized supplementation strategies, informed by medical expertise, are pivotal for optimal outcomes in both clinical and preclinical contexts. Nevertheless, conclusive evidence regarding the efficacy of vitamins in cancer prevention and treatment is still pending, urging further research and exploration in this compelling area of study.

SELECTION OF CITATIONS
SEARCH DETAIL