Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915674

ABSTRACT

Obesity is a worsening global epidemic that is regulated by the microbiota through unknown bacterial factors. We discovered a human-derived commensal bacterium, Clostridium immunis , that protects against metabolic disease by secreting a phosphocholine-modified exopolysaccharide. Genetic interruption of the phosphocholine biosynthesis locus ( licABC ) results in a functionally inactive exopolysaccharide, which demonstrates the critical requirement for this phosphocholine moiety. This C. immunis exopolysaccharide acts via group 3 innate lymphoid cells and modulating IL-22 levels, which results in a reduction in serum triglycerides, body weight, and visceral adiposity. Importantly, phosphocholine biosynthesis genes are less abundant in humans with obesity or hypertriglyceridemia, findings that suggest the role of bacterial phosphocholine is conserved across mice and humans. These results define a bacterial molecule-and its key structural motif-that regulates host metabolism. More broadly, they highlight how small molecules, such as phosphocholine, may help fine-tune microbiome- immune-metabolism interactions.

2.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712077

ABSTRACT

Physical particles can serve as critical abiotic factors that structure the ecology of microbial communities. For non-human vertebrate gut microbiomes, fecal particle size (FPS) has been known to be shaped by chewing efficiency and diet. However, little is known about what drives FPS in the human gut. Here, we analyzed FPS by laser diffraction across a total of 76 individuals and found FPS to be strongly individualized. Surprisingly, a behavioral intervention with 41 volunteers designed to increase chewing efficiency did not impact FPS. Dietary patterns could also not be associated with FPS. Instead, we found evidence that mammalian and human gut microbiomes shaped FPS. Fecal samples from germ-free and antibiotic-treated mice exhibited increased FPS relative to colonized mice. In humans, markers of longer transit time were correlated with smaller FPS. Gut microbiota diversity and composition were also associated with FPS. Finally, ex vivo culture experiments using human fecal microbiota from distinct donors showed that differences in microbiota community composition can drive variation in particle size. Together, our results support an ecological model in which the human gut microbiome plays a key role in reducing the size of food particles during digestion, and that the microbiomes of individuals vary in this capacity. These new insights also suggest FPS in humans to be governed by processes beyond those found in other mammals and emphasize the importance of gut microbiota in shaping their own abiotic environment.

3.
bioRxiv ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38659737

ABSTRACT

There is growing appreciation that commensal bacteria impact the outcome of viral infections, though the specific bacteria and their underlying mechanisms remain poorly understood. Studying a simian-human immunodeficiency virus (SHIV)-challenged cohort of pediatric nonhuman primates, we bioinformatically associated Lactobacillus gasseri and the bacterial family Lachnospiraceae with enhanced resistance to infection. We experimentally validated these findings by demonstrating two different Lachnospiraceae isolates, Clostridium immunis and Ruminococcus gnavus, inhibited HIV replication in vitro and ex vivo. Given the link between tryptophan catabolism and HIV disease severity, we found that an isogenic mutant of C. immunis that lacks the aromatic amino acid aminotransferase (ArAT) gene, which is key to metabolizing tryptophan into 3-indolelactic acid (ILA), no longer inhibits HIV infection. Intriguingly, we confirmed that a second commensal bacterium also inhibited HIV in an ArAT-dependent manner, thus establishing the generalizability of this finding. In addition, we found that purified ILA inhibited HIV infection by agonizing the aryl hydrocarbon receptor (AhR). Given that the AhR has been implicated in the control of multiple viral infections, we demonstrated that C. immunis also inhibited human cytomegalovirus (HCMV) infection in an ArAT-dependent manner. Importantly, metagenomic analysis of individuals at-risk for HIV revealed that those who ultimately acquired HIV had a lower fecal abundance of the bacterial ArAT gene compared to individuals who did not, which indicates our findings translate to humans. Taken together, our results provide mechanistic insights into how commensal bacteria decrease susceptibility to viral infections. Moreover, we have defined a microbiota-driven antiviral pathway that offers the potential for novel therapeutic strategies targeting a broad spectrum of viral pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL