Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020175

ABSTRACT

For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark1-7. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies. Deletion of Il11 or Il11ra1 protects against metabolic decline, multi-morbidity and frailty in old age. Administration of anti-IL-11 to 75-week-old mice for 25 weeks improves metabolism and muscle function, and reduces ageing biomarkers and frailty across sexes. In lifespan studies, genetic deletion of Il11 extended the lives of mice of both sexes, by 24.9% on average. Treatment with anti-IL-11 from 75 weeks of age until death extends the median lifespan of male mice by 22.5% and of female mice by 25%. Together, these results demonstrate a role for the pro-inflammatory factor IL-11 in mammalian healthspan and lifespan. We suggest that anti-IL-11 therapy, which is currently in early-stage clinical trials for fibrotic lung disease, may provide a translational opportunity to determine the effects of IL-11 inhibition on ageing pathologies in older people.

2.
Nature ; 552(7683): 110-115, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29160304

ABSTRACT

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Subject(s)
Cardiovascular System/metabolism , Cardiovascular System/pathology , Fibrosis/metabolism , Fibrosis/pathology , Interleukin-11/metabolism , Animals , Autocrine Communication , Cells, Cultured , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/chemically induced , Heart , Humans , Interleukin-11/antagonists & inhibitors , Interleukin-11/genetics , Interleukin-11 Receptor alpha Subunit/deficiency , Interleukin-11 Receptor alpha Subunit/genetics , Kidney/pathology , Male , Mice , Mice, Knockout , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Organ Dysfunction Scores , Protein Biosynthesis , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transgenes/genetics
3.
J Am Soc Nephrol ; 33(4): 718-730, 2022 04.
Article in English | MEDLINE | ID: mdl-35140116

ABSTRACT

BACKGROUND: Alport syndrome is a genetic disorder characterized by a defective glomerular basement membrane, tubulointerstitial fibrosis, inflammation, and progressive renal failure. IL-11 was recently implicated in fibrotic kidney disease, but its role in Alport syndrome is unknown. METHODS: We determined IL-11 expression by molecular analyses and in an Alport syndrome mouse model. We assessed the effects of a neutralizing IL-11 antibody (×203) versus an IgG control in Col4a3-/- mice (lacking the gene encoding a type IV collagen component) on renal tubule damage, function, fibrosis, and inflammation. Effects of ×203, the IgG control, an angiotensin-converting enzyme (ACE) inhibitor (ramipril), or ramipril+X203 on lifespan were also studied. RESULTS: In Col4a3-/- mice, as kidney failure advanced, renal IL-11 levels increased, and IL-11 expression localized to tubular epithelial cells. The IL-11 receptor (IL-11RA1) is expressed in tubular epithelial cells and podocytes and is upregulated in tubular epithelial cells of Col4a3-/- mice. Administration of ×203 reduced albuminuria, improved renal function, and preserved podocyte numbers and levels of key podocyte proteins that are reduced in Col4a3-/- mice; these effects were accompanied by reduced fibrosis and inflammation, attenuation of epithelial-to-mesenchymal transition, and increased expression of regenerative markers. X203 attenuated pathogenic ERK and STAT3 pathways, which were activated in Col4a3-/- mice. The median lifespan of Col4a3-/- mice was prolonged 22% by ramipril, 44% with ×203, and 99% with ramipril+X203. CONCLUSIONS: In an Alport syndrome mouse model, renal IL-11 is upregulated, and neutralization of IL-11 reduces epithelial-to-mesenchymal transition, fibrosis, and inflammation while improving renal function. Anti-IL-11 combined with ACE inhibition synergistically extends lifespan. This suggests that a therapeutic approach targeting IL-11 holds promise for progressive kidney disease in Alport syndrome.


Subject(s)
Nephritis, Hereditary , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Interleukin-11/therapeutic use , Kidney/pathology , Longevity , Mice , Mice, Knockout , Nephritis, Hereditary/drug therapy , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism
4.
Int J Mol Sci ; 23(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35806094

ABSTRACT

N-acetyl-p-aminophenol (APAP)-induced liver damage is associated with upregulation of Interleukin-11 (IL11), which is thought to stimulate IL6ST (gp130)-mediated STAT3 activity in hepatocytes, as a compensatory response. However, recent studies have found IL11/IL11RA/gp130 signaling to be hepatotoxic. To investigate further the role of IL11 and gp130 in APAP liver injury, we generated two new mouse strains with conditional knockout (CKO) of either Il11 (CKOIl11) or gp130 (CKOgp130) in adult hepatocytes. Following APAP, as compared to controls, CKOgp130 mice had lesser liver damage with lower serum Alanine Transaminase (ALT) and Aspartate Aminotransferase (AST), greatly reduced serum IL11 levels (90% lower), and lesser centrilobular necrosis. Livers from APAP-injured CKOgp130 mice had lesser ERK, JNK, NOX4 activation and increased markers of regeneration (PCNA, Cyclin D1, Ki67). Experiments were repeated in CKOIl11 mice that, as compared to wild-type mice, had lower APAP-induced ALT/AST, reduced centrilobular necrosis and undetectable IL11 in serum. As seen with CKOgp130 mice, APAP-treated CKOIl11 mice had lesser ERK/JNK/NOX4 activation and greater features of regeneration. Both CKOgp130 and CKOIl11 mice had normal APAP metabolism. After APAP, CKOgp130 and CKOIl11 mice had reduced Il6, Ccl2, Ccl5, Il1ß, and Tnfα expression. These studies exclude IL11 upregulation as compensatory and establish autocrine, self-amplifying, gp130-dependent IL11 secretion from damaged hepatocytes as toxic and anti-regenerative.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , Hepatocytes/metabolism , Interleukin-11/genetics , Interleukin-11/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Necrosis/metabolism
5.
Int J Mol Sci ; 23(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408908

ABSTRACT

Interleukin-11 (IL11) is important for fibrosis and inflammation, but its role in the pancreas is unclear. In pancreatitis, fibrosis, inflammation and organ dysfunction are associated with pancreatic stellate cell (PSC)-to-myofibroblast transformation. Here, we show that IL11 stimulation of PSCs, which specifically express IL11RA in the pancreas, results in transient STAT3 phosphorylation, sustained ERK activation and PSC activation. In contrast, IL6 stimulation of PSCs caused sustained STAT3 phosphorylation but did not result in ERK activation or PSC transformation. Pancreatitis factors, including TGFß, CTGF and PDGF, induced IL11 secretion from PSCs and a neutralising IL11RA antibody prevented PSC activation by these stimuli. This revealed an important ERK-dependent role for autocrine IL11 activity in PSCs. In mice, IL11 was increased in the pancreas after pancreatic duct ligation, and in humans, IL11 and IL11RA levels were elevated in chronic pancreatitis. Following pancreatic duct ligation, administration of anti-IL11RA to mice reduced pathologic (ERK, STAT, NF-κB) signalling, pancreatic atrophy, fibrosis and pro-inflammatory cytokine (TNFα, IL6 and IL1ß) levels. This is the first description of IL11-mediated activation of PSCs, and the data suggest IL11 as a stromal therapeutic target in pancreatitis.


Subject(s)
Interleukin-11 , Pancreatitis, Chronic , Animals , Atrophy/pathology , Disease Models, Animal , Fibrosis , Inflammation/pathology , Interleukin-6 , Mice , Pancreas/pathology , Pancreatic Stellate Cells/pathology , Pancreatitis, Chronic/pathology
6.
Rheumatology (Oxford) ; 60(12): 5820-5826, 2021 12 01.
Article in English | MEDLINE | ID: mdl-33590875

ABSTRACT

OBJECTIVES: Interleukin 11 (IL11) is highly upregulated in skin and lung fibroblasts from patients with systemic sclerosis (SSc). Here we tested whether IL11 is mechanistically linked with activation of human dermal fibroblasts (HDFs) from patients with SSc or controls. METHODS: We measured serum IL11 levels in volunteers and patients with early diffuse SSc and manipulated IL11 signalling in HDFs using gain- and loss-of-function approaches that we combined with molecular and cellular phenotyping. RESULTS: In patients with SSc, serum IL11 levels are elevated as compared with healthy controls. All transforming growth factor beta (TGFß) isoforms induced IL11 secretion from HDFs, which highly express IL11 receptor α-subunit and the glycoprotein 130 (gp130) co-receptor, suggestive of an autocrine loop of IL11 activity in HDFs. IL11 stimulated ERK activation in HDFs and resulted in HDF-to-myofibroblast transformation and extracellular matrix secretion. The pro-fibrotic action of IL11 in HDFs appeared unrelated to STAT3 activity, independent of TGFß upregulation and was not associated with phosphorylation of SMAD2/3. Inhibition of IL11 signalling using either a neutralizing antibody against IL11 or siRNA against IL11RA reduced TGFß-induced HDF proliferation, matrix production and cell migration, which was phenocopied by pharmacological inhibition of ERK. CONCLUSIONS: These data reveal that autocrine IL11-dependent ERK activity alone or downstream of TGFß stimulation promotes fibrosis phenotypes in dermal fibroblasts and suggest IL11 as a potential therapeutic target in SSc.


Subject(s)
Gene Expression Regulation , Interleukin-11 Receptor alpha Subunit/genetics , Interleukin-11/blood , MAP Kinase Signaling System/genetics , RNA/genetics , Scleroderma, Systemic/blood , Skin/pathology , Biomarkers/blood , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-11 Receptor alpha Subunit/biosynthesis , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Signal Transduction
7.
FASEB J ; 34(9): 11802-11815, 2020 09.
Article in English | MEDLINE | ID: mdl-32656894

ABSTRACT

Repetitive pulmonary injury causes fibrosis and inflammation that underlies chronic lung diseases such as idiopathic pulmonary fibrosis (IPF). Interleukin 11 (IL11) is important for pulmonary fibroblast activation but the contribution of fibroblast-specific IL11 activity to lung fibro-inflammation is not known. To address this gap in knowledge, we generated mice with loxP-flanked Il11ra1 and deleted the IL11 receptor in adult fibroblasts (CKO mice). In the bleomycin (BLM) model of lung fibrosis, CKO mice had reduced fibrosis, lesser fibroblast ERK activation, and diminished immune cell STAT3 phosphorylation. Following BLM injury, acute inflammation in CKO mice was similar to controls but chronic immune infiltrates and pro-inflammatory gene activation, including NF-kB phosphorylation, were notably reduced. Therapeutic prevention of IL11 activity with neutralizing antibodies mirrored the effects of genetic deletion of Il11ra1 in fibroblasts. These data reveal a new function for IL11 in pro-inflammatory lung fibroblasts and highlight the important contribution of the stroma to inflammation in pulmonary disease.


Subject(s)
Fibroblasts/metabolism , Inflammation/metabolism , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/metabolism , Pulmonary Fibrosis/metabolism , Animals , Bleomycin , Cells, Cultured , Chronic Disease , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Inflammation/genetics , Interleukin-11/pharmacology , Interleukin-11 Receptor alpha Subunit/genetics , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , NF-kappa B/metabolism , Phosphorylation , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
8.
Circulation ; 140(11): 937-951, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31284728

ABSTRACT

BACKGROUND: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global posttranscriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored. METHODS: Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. The integration with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients demonstrates that these posttranscriptional mechanisms are also active in the diseased fibrotic human heart. RESULTS: We generated nucleotide-resolution translatome data during the transforming growth factor ß1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation, and dynamic variation in ribosome occupancy affects protein abundance independent of RNA levels. Targets of RNA-binding proteins were strongly enriched in posttranscriptionally regulated genes, suggesting genes such as MBNL2 can act as translational activators or repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy suggested the same posttranscriptional regulatory network was underlying cardiac fibrosis. Key network hubs include RNA-binding proteins such as Pumilio RNA binding family member 2 (PUM2) and Quaking (QKI) that work in concert to regulate the translation of target transcripts in human diseased hearts. Furthermore, silencing of both PUM2 and QKI inhibits the transition of fibroblasts toward profibrotic myofibroblasts in response to transforming growth factor ß1. CONCLUSIONS: We reveal widespread translational effects of transforming growth factor ß1 and define novel posttranscriptional regulatory networks that control the fibroblast-to-myofibroblast transition. These networks are active in human heart disease, and silencing of hub genes limits fibroblast activation. Our findings show the central importance of translational control in fibrosis and highlight novel pathogenic mechanisms in heart failure.


Subject(s)
Heart Diseases/genetics , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Protein Biosynthesis/genetics , RNA-Binding Proteins/genetics , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Gene Expression Profiling/methods , Heart Diseases/pathology , Humans , Sequence Analysis, RNA/methods , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
9.
Gastroenterology ; 157(3): 777-792.e14, 2019 09.
Article in English | MEDLINE | ID: mdl-31078624

ABSTRACT

BACKGROUND & AIMS: We studied the role of interleukin 11 (IL11) signaling in the pathogenesis of nonalcoholic steatohepatitis (NASH) using hepatic stellate cells (HSCs), hepatocytes, and mouse models of NASH. METHODS: We stimulated mouse and human fibroblasts, HSCs, or hepatocytes with IL11 and other cytokines and analyzed them by imaging, immunoblot, and functional assays and enzyme-linked immunosorbent assays. Mice were given injections of IL11. Mice with disruption of the interleukin 11 receptor subunit alpha1 gene (Il11ra1-/-) mice and Il11ra1+/+ mice were fed a high-fat methionine- and choline-deficient diet (HFMCD) or a Western diet with liquid fructose (WDF) to induce steatohepatitis; control mice were fed normal chow. db/db mice were fed with methionine- and choline-deficient diet for 12 weeks and C57BL/6 NTac were fed with HFMCD for 10 weeks or WDF for 16 weeks. Some mice were given intraperitoneal injections of anti-IL11 (X203), anti-IL11RA (X209), or a control antibody at different timepoints on the diets. Livers and blood were collected; blood samples were analyzed by biochemistry and liver tissues were analyzed by histology, RNA sequencing, immunoblots, immunohistochemistry, hydroxyproline, and mass cytometry time of flight assays. RESULTS: HSCs incubated with cytokines produced IL11, resulting in activation (phosphorylation) of ERK and expression of markers of fibrosis. Livers of mice given injections of IL11 became damaged, with increased markers of fibrosis, hepatocyte cell death and inflammation. Following the HFMCD or WDF, livers from Il11ra1-/- mice had reduced steatosis, fibrosis, expression of markers of inflammation and steatohepatitis, compared to and Il11ra1+/+ mice on the same diets. Depending on the time of administration of anti-IL11 or anti-IL11RA antibodies to wild-type mice on the HFMCD or WDF, or to db/db mice on the methionine and choline-deficient diet, the antibodies prevented, stopped, or reversed development of fibrosis and steatosis. Blood samples from Il11ra1+/+ mice fed the WDF and given injections of anti-IL11 or anti-IL11RA, as well as from Il11ra1-/- mice fed WDF, had lower serum levels of lipids and glucose than mice not injected with antibody or with disruption of Il11ra1. CONCLUSIONS: Neutralizing antibodies that block IL11 signaling reduce fibrosis, steatosis, hepatocyte death, inflammation and hyperglycemia in mice with diet-induced steatohepatitis. These antibodies also improve the cardiometabolic profile of mice and might be developed for the treatment of NASH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Hepatitis/prevention & control , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/antagonists & inhibitors , Liver Cirrhosis, Experimental/prevention & control , Liver/drug effects , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Cell Death/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatitis/genetics , Hepatitis/metabolism , Hepatitis/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation Mediators/metabolism , Interleukin-11/metabolism , Interleukin-11 Receptor alpha Subunit/deficiency , Interleukin-11 Receptor alpha Subunit/genetics , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/genetics , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction/drug effects , THP-1 Cells
10.
iScience ; 25(8): 104806, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35992082

ABSTRACT

IL11 initiates fibroblast activation but also causes epithelial cell dysfunction. The mechanisms underlying these processes are not known. We report that IL11-stimulated ERK/P90RSK activity causes the phosphorylation of LKB1 at S325 and S428, leading to its inactivation. This inhibits AMPK and activates mTOR across cell types. In stromal cells, IL11-stimulated ERK activity inhibits LKB1/AMPK which is associated with mTOR activation, ⍺SMA expression, and myofibroblast transformation. In hepatocytes and epithelial cells, IL11/ERK activity inhibits LKB1/AMPK leading to mTOR activation, SNAI1 expression, and cell dysfunction. Across cells, IL11-induced phenotypes were inhibited by metformin stimulated AMPK activation. In mice, genetic or pharmacologic manipulation of IL11 activity revealed a critical role of IL11/ERK signaling for LKB1/AMPK inhibition and mTOR activation in fatty liver disease. These data identify the IL11/mTOR axis as a signaling commonality in stromal, epithelial, and cancer cells and reveal a shared IL11-driven mesenchymal program across cell types.

11.
Nat Commun ; 13(1): 7497, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470928

ABSTRACT

The kidney has large regenerative capacity, but this is compromised when kidney damage is excessive and renal tubular epithelial cells (TECs) undergo SNAI1-driven growth arrest. Here we investigate the role of IL11 in TECs, kidney injury and renal repair. IL11 stimulation of TECs induces ERK- and p90RSK-mediated GSK3ß inactivation, SNAI1 upregulation and pro-inflammatory gene expression. Mice with acute kidney injury upregulate IL11 in TECs leading to SNAI1 expression and kidney dysfunction, which is not seen in Il11 deleted mice or in mice administered a neutralizing IL11 antibody in either preemptive or treatment modes. In acute kidney injury, anti-TGFß reduces renal fibrosis but exacerbates inflammation and tubule damage whereas anti-IL11 reduces all pathologies. Mice with TEC-specific deletion of Il11ra1 have reduced pathogenic signaling and are protected from renal injury-induced inflammation, fibrosis, and failure. In a model of chronic kidney disease, anti-IL11 therapy promotes TEC proliferation and parenchymal regeneration, reverses fibroinflammation and restores renal mass and function. These data highlight IL11-induced mesenchymal transition of injured TECs as an important renal pathology and suggest IL11 as a therapeutic target for restoring stalled endogenous regeneration in the diseased kidney.


Subject(s)
Acute Kidney Injury , Antibodies, Neutralizing , Interleukin-11 , Kidney Tubules , Nephritis , Regeneration , Renal Insufficiency, Chronic , Animals , Mice , Acute Kidney Injury/therapy , Fibrosis , Interleukin-11 Receptor alpha Subunit/genetics , Kidney Tubules/physiology , Nephritis/therapy , Interleukin-11/antagonists & inhibitors , Interleukin-11/physiology , Gene Deletion , Antibodies, Neutralizing/therapeutic use , Renal Insufficiency, Chronic/therapy , Disease Models, Animal
12.
Exp Appl Acarol ; 55(2): 123-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21468750

ABSTRACT

Mites are known causes of allergic diseases. Currently, identification of mites based on morphology is difficult if only one mite is isolated from a (dust) sample, or when only one gender is found, or when the specimen is not intact especially with the loss of the legs. The purpose of this study was to use polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of the ITS2 gene, to complement the morphological data for the identification of mites to the species level. For this, six species were cultured: Dermatophagoides pteronyssinus, D. farinae, Blomia tropicalis, Tyrophagus putrescentiae, Aleuroglyphus ovatus and Glycycometus malaysiensis. Genomic DNA of the mites was extracted, quantified, amplified and digested individually with restriction enzymes. Hinf I and Ple I differentiated the restriction patterns of D. pteronyssinus and D. farinae. Bfa I and Alu I enzymes differentiated B. tropicalis and G. malaysiensis. Ple I enzyme was useful for the differentiation between T. putrescentiae and A. ovatus. Bfa I was useful for the differentiation of G. malaysiensis from the rest of the species. In conclusion, different species of mites can be differentiated using PCR-RFLP of ITS2 region. With the established PCR-RFLP method in this study, identification of these mites to the species level is possible even if complete and intact adult specimens of both sexes are not available. As no study to date has reported PCR-RFLP method for the identification of domestic mites, the established method should be validated for the identification of other species of mites that were not included in this study.


Subject(s)
Acaridae/classification , DNA, Intergenic , Pyroglyphidae/classification , Acaridae/genetics , Animals , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Pyroglyphidae/genetics
13.
Curr Protoc ; 1(9): e251, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34570432

ABSTRACT

Interleukin (IL) 11 is a member of the IL6 family of cytokines which require the ubiquitous gp130 receptor to activate canonical (JAK/STAT) and non-canonical (e.g., ERK) signaling pathways. The IL11 cytokine is upregulated in a number of fibro-inflammatory diseases and cancer, where it binds the cognate IL11 receptor alpha subunit (IL11RA) to form a hexameric IL11:IL11RA:gp130 signaling complex. The specific IL11RA receptor is highly expressed on cells of the stromal and parenchymal niche but expressed at low levels on immune cells, highly passaged cells, or transformed cell lines. Consequently, primary cells such as hepatic stellate cells, fibroblasts, and hepatocytes are ideal experimental systems to study IL11 signaling in vitro. In contrast to immortalized cell lines, primary cells better display relevant cellular physiology and pathobiology. This collection of protocols details experimental and culturing conditions for primary cells that preserve meaningful cellular states and physiological responses ex vivo in conventional 2D cell culture systems. Readouts of cellular activity are chosen carefully to capture the non-canonical, post-transcriptional activity of IL11 signaling. Our data suggest that cell type, cell culture conditions, passage number, concentrations of stimuli, timing, and other factors have major implications for studies of IL11 signaling. In vitro experiments with primary cell material need to be planned and executed with great caution. Otherwise, physiologically relevant mechanisms may become dysfunctional and reproducible experimental artefacts can obscure our view of true cytokine biology. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expansion of primary human hepatic stellate cells (HSCs) and human renal proximal tubular epithelial cells (HRPTEpiCs) Basic Protocol 2: Expansion of primary human lung fibroblasts (HLFs) Alternate Protocol 1: Isolation and expansion of primary mouse lung fibroblasts Support Protocol 1: Freezing and thawing of primary cells Support Protocol 2: Operetta high-content imaging-based phenotyping Support Protocol 3: Colorimetric assay of solubilized collagen Support Protocol 4: Quantification of fibrosis marker secretion Support Protocol 5: Western blotting studies of IL11 signaling in HSCs, HLFs, and HRPTEpiCs Basic Protocol 3: IL11 stimulation of primary human hepatocytes Alternate Protocol 2: IL11 stimulation of primary mouse hepatocytes Support Protocol 6: Alanine transaminase (ALT) secretion by human and mouse hepatocytes.


Subject(s)
Artifacts , Interleukin-11 , Animals , Hepatic Stellate Cells , Hepatocytes , Mice , Signal Transduction
14.
Front Mol Biosci ; 8: 740650, 2021.
Article in English | MEDLINE | ID: mdl-34651016

ABSTRACT

In fibroblasts, TGFß1 stimulates IL11 upregulation that leads to an autocrine loop of IL11-dependent pro-fibrotic protein translation. The signaling pathways downstream of IL11, which acts via IL6ST, are contentious with both STAT3 and ERK implicated. Here we dissect IL11 signaling in fibroblasts and study IL11-dependent protein synthesis pathways in the context of approved anti-fibrotic drug mechanisms of action. We show that IL11-induced ERK activation drives fibrogenesis and while STAT3 phosphorylation (pSTAT3) is also seen, this appears unrelated to fibroblast activation. Ironically, recombinant human IL11, which has been used extensively in mouse experiments to infer STAT3 activity downstream of IL11, increases pSTAT3 in Il11ra1 null mouse fibroblasts. Unexpectedly, inhibition of STAT3 was found to induce severe proteotoxic ER stress, generalized fibroblast dysfunction and cell death. In contrast, inhibition of ERK prevented fibroblast activation in the absence of ER stress. IL11 stimulated an axis of ERK/mTOR/P70RSK protein translation and its selectivity for Collagen 1 synthesis was ascribed to an EPRS-regulated, ribosome stalling mechanism. Surprisingly, the anti-fibrotic drug nintedanib caused dose-dependent ER stress and lesser pSTAT3 expression. Pirfenidone had no effect on ER stress whereas anti-IL11 specifically inhibited the ERK/mTOR axis while reducing ER stress. These studies define the translation-specific signaling pathways downstream of IL11, intersect immune and metabolic signaling and reveal unappreciated effects of nintedanib.

15.
Sci Rep ; 11(1): 14088, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239012

ABSTRACT

Loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and incompletely penetrant craniosynostosis. The impact of LOF in IL11 has not been characterized. We generated IL11 knockout (Il11-/-) mice that are born in expected ratios and have normal hematological profiles. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation with TGFß1. Following bleomycin-induced lung injury, Il11-/- mice are protected from pulmonary fibrosis and exhibit lesser ERK, STAT3 and NF-kB activation, reduced Il1b, Timp1, Ccl2 and diminished IL6 expression, both at baseline and after injury: placing Il11 activity upstream of IL6 in this model. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have craniosynostosis, have normal long bone mass and reduced body weights. These data further establish the role of IL11 signaling in lung fibrosis while suggesting that bone development abnormalities can be associated with mutation of IL11RA but not IL11, which may have implications for therapeutic targeting of IL11 signaling.


Subject(s)
Craniosynostoses/complications , Fertility , Inflammation/complications , Inflammation/pathology , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-11/metabolism , Lung/pathology , Animals , Bleomycin , Cell Differentiation , Craniosynostoses/blood , Female , Fibronectins/metabolism , Humans , Infertility, Female/blood , Infertility, Female/pathology , Inflammation/blood , Metabolomics , Mice, Knockout , Myofibroblasts/pathology , NF-kappa B/metabolism , Phosphorylation , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/pathology , STAT3 Transcription Factor/metabolism , Smad2 Protein
16.
Nat Commun ; 12(1): 66, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397952

ABSTRACT

IL11 is important for fibrosis in non-alcoholic steatohepatitis (NASH) but its role beyond the stroma in liver disease is unclear. Here, we investigate the role of IL11 in hepatocyte lipotoxicity. Hepatocytes highly express IL11RA and secrete IL11 in response to lipid loading. Autocrine IL11 activity causes hepatocyte death through NOX4-derived ROS, activation of ERK, JNK and caspase-3, impaired mitochondrial function and reduced fatty acid oxidation. Paracrine IL11 activity stimulates hepatic stellate cells and causes fibrosis. In mouse models of NASH, hepatocyte-specific deletion of Il11ra1 protects against liver steatosis, fibrosis and inflammation while reducing serum glucose, cholesterol and triglyceride levels and limiting obesity. In mice deleted for Il11ra1, restoration of IL11 cis-signaling in hepatocytes reconstitutes steatosis and inflammation but not fibrosis. We found no evidence for the existence of IL6 or IL11 trans-signaling in hepatocytes or NASH. These data show that IL11 modulates hepatocyte metabolism and suggests a mechanism for NAFLD to NASH transition.


Subject(s)
Hepatocytes/metabolism , Interleukin-11/metabolism , Lipids/toxicity , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction , Adult , Animals , Autocrine Communication/drug effects , Cells, Cultured , Disease Models, Animal , Feeding Behavior , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/drug effects , Hepatocytes/pathology , Humans , Interleukin-11 Receptor alpha Subunit/metabolism , Interleukin-6/metabolism , Mice, Knockout , Models, Biological , Paracrine Communication/drug effects , Phenotype , Signal Transduction/drug effects
17.
Sci Transl Med ; 13(597)2021 06 09.
Article in English | MEDLINE | ID: mdl-34108253

ABSTRACT

Acetaminophen (N-acetyl-p-aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity. Our results show that species-matched IL11 behaves like a hepatotoxin. IL11 secreted from APAP-damaged human and mouse hepatocytes triggered an autocrine loop of NADPH oxidase 4 (NOX4)-dependent cell death, which occurred downstream of APAP-initiated mitochondrial dysfunction. Hepatocyte-specific deletion of Il11 receptor subunit alpha chain 1 (Il11ra1) in adult mice protected against AILI despite normal APAP metabolism and glutathione (GSH) depletion. Mice with germline deletion of Il11 were also protected from AILI, and deletion of Il1ra1 or Il11 was associated with reduced c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation and quickly restored GSH concentrations. Administration of a neutralizing IL11RA antibody reduced AILI in mice across genetic backgrounds and promoted survival when administered up to 10 hours after APAP. Inhibition of IL11 signaling was associated with the up-regulation of markers of liver regenerations: cyclins and proliferating cell nuclear antigen (PCNA) as well as with phosphorylation of retinoblastoma protein (RB) 24 hours after AILI. Our data suggest that species-matched IL11 is a hepatotoxin and that IL11 signaling might be an effective therapeutic target for APAP-induced liver damage.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Hepatocytes , Interleukin-11 , Interleukin-11 Receptor alpha Subunit , Liver , Mice , Mice, Inbred C57BL
18.
Emerg Infect Dis ; 16(10): 1554-61, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20875280

ABSTRACT

We describe incidence and risk factors for pandemic (H1N1) 2009 virus infection in healthcare personnel during the June-September 2009 epidemic in Singapore. Personnel contributed 3 serologic samples during June-October 2009, with seroconversion defined as a ≥4-fold increase in hemagglutination inhibition titers to pandemic (H1N1) 2009. Of 531 participants, 35 showed evidence of seroconversion. Seroconversion rates were highest in nurses (28/290) and lowest in allied health staff (2/116). Significant risk factors on multivariate analysis were being a nurse (adjusted odds ratio [aOR] 4.5, 95% confidence interval [CI] 1.0-19.6) and working in pandemic (H1N1) 2009 isolation wards (aOR 4.5, 95% CI 1.3-15.6). Contact with pandemic (H1N1) 2009-infected colleagues (aOR 2.5, 95% CI 0.9-6.6) and larger household size (aOR 1.2, 95% CI 1.0-1.4) were of borderline significance. Our study suggests that seroconversion was associated with occupational and nonoccupational risk factors.


Subject(s)
Antibodies, Viral/blood , Disease Outbreaks , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/epidemiology , Personnel, Hospital , Adult , Female , Humans , Incidence , Influenza, Human/immunology , Male , Occupational Exposure , Pandemics , Risk Factors , Seroepidemiologic Studies , Singapore/epidemiology
19.
Sci Transl Med ; 11(511)2019 09 25.
Article in English | MEDLINE | ID: mdl-31554736

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease where invasive pulmonary myofibroblasts secrete collagen and destroy lung integrity. Here, we show that interleukin-11 (IL11) is up-regulated in the lung of patients with IPF, associated with disease severity, and IL-11 is secreted from IPF fibroblasts. In vitro, IL-11 stimulates lung fibroblasts to become invasive actin alpha 2, smooth muscle-positive (ACTA2+), collagen-secreting myofibroblasts in an extracellular signal-regulated kinase (ERK)-dependent, posttranscriptional manner. In mice, fibroblast-specific transgenic expression or administration of murine IL-11 induces lung myofibroblasts and causes lung fibrosis. IL-11 receptor subunit alpha-1 (Il11ra1)-deleted mice, whose lung fibroblasts are unresponsive to profibrotic stimulation, are protected from fibrosis in the bleomycin mouse model of pulmonary fibrosis. We generated an IL-11-neutralizing antibody that blocks lung fibroblast activation downstream of multiple stimuli and reverses myofibroblast activation. In therapeutic studies, anti-IL-11 treatment diminished lung inflammation and reversed lung fibrosis while inhibiting ERK and SMAD activation in mice. These data prioritize IL-11 as a drug target for lung fibrosis and IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Interleukin-11/therapeutic use , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Bleomycin , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-11 Receptor alpha Subunit/metabolism , Lung/pathology , Mice, Knockout , Severity of Illness Index , Signal Transduction , Up-Regulation
20.
Alzheimers Dement (N Y) ; 4: 19-27, 2018.
Article in English | MEDLINE | ID: mdl-29955648

ABSTRACT

INTRODUCTION: Patients with dementia (PWDs) are often subjected to enforced dependency and experience functional decline and emotional distress during hospital stay. Person-centered care (PCC) with specialized psychosocial interventions, minimally obtrusive medical care, and physical restraints-free practice holds potential to improve patient outcomes. We evaluate the effectiveness of an acute hospital dementia unit (Care for Acute Mentally Infirm Elders [CAMIE]) that adopts a PCC protocol. METHODS: Prospective naturalistic cohort study whereby PWDs in the CAMIE unit (n = 170) were compared with a control group in usual care wards (n = 60) over 6 months. Assessments included patient demographics, dementia type and stage, comorbidities (Charlson's Comorbidity Index), acute illness severity, Well-Being, Ill-Being, functional status (Modified Barthel Index), agitation levels (Pittsburgh Agitation Scale), and quality of life (EuroQoL), assessed on admission and discharge. Multivariate analysis of covariance examined the effect of CAMIE versus usual care on pre-post outcomes. RESULTS: CAMIE patients showed statistically significant greater gains in Modified Barthel Index function and Well-Being, decreased Ill-Being and agitation, and greater improvement in EuroQoL index score (effect size: Δ = 0.18) after adjusting for baseline differences that translated to a quality-adjusted life years gain of 0.045, assuming stability over 3 months. Estimating added cost of CAMIE stay over usual care at SGD 1500 (USD 1040) for average length of stay of 15 days per patient, the incremental cost-effectiveness ratio fell within the threshold for cost-effectiveness at USD 23,111. DISCUSSION: PCC for PWDs in acute hospitals not only improves clinical outcomes for patients but is also cost-effective. The results support the adoption of PCC on a wider scale for better care of PWDs.

SELECTION OF CITATIONS
SEARCH DETAIL