Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Small ; 20(3): e2302014, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698252

ABSTRACT

On-demand uranium extraction from seawater (UES) can mitigate growing sustainable energy needs, while high salinity and low concentration hinder its recovery. A novel anionic metal-organic framework (iMOF-1A) is demonstrated adorned with rare Lewis basic pyrazinic sites as uranyl-specific nanotrap serving as robust ion exchange material for selective uranium extraction, rendering its intrinsic ionic characteristics to minimize leaching. Ionic adsorbents sequestrate 99.8% of the uranium in 120 mins (from 20,000 ppb to 24 ppb) and adsorb large amounts of 1336.8 mg g-1 and 625.6 mg g-1 from uranium-spiked deionized water and artificial seawater, respectively, with high distribution coefficient, Kd U ≥ 0.97 × 106  mL g-1 . The material offers a very high enrichment index of ≈5754 and it achieves the UES standard of 6.0 mg g-1 in 16 days, and harvests 9.42 mg g-1 in 30 days from natural seawater. Isothermal titration calorimetry (ITC) studies quantify thermodynamic parameters, previously uncharted in uranium sorption experiments. Infrared nearfield nanospectroscopy (nano-FTIR) and tip-force microscopy (TFM) enable chemical and mechanical elucidation of host-guest interaction at atomic level in sub-micron crystals revealing extant capture events throughout the crystal rather than surface solely. Comprehensive experimentally guided computational studies reveal ultrahigh-selectivity for uranium from seawater, marking mechanistic insight.

2.
Chem Rev ; 122(11): 10438-10483, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35427119

ABSTRACT

This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.


Subject(s)
Metal-Organic Frameworks , Luminescence , Metal-Organic Frameworks/chemistry , Metals/chemistry
3.
Nat Mater ; 20(7): 1015-1023, 2021 07.
Article in English | MEDLINE | ID: mdl-33888902

ABSTRACT

Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.


Subject(s)
Microfluidic Analytical Techniques/methods , Nanotechnology , Zeolites/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Porosity
4.
Nano Lett ; 20(10): 7446-7454, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32870694

ABSTRACT

Metal-organic frameworks (MOFs) can provide exceptional porosity for molecular guest encapsulation useful for emergent applications in sensing, gas storage, drug delivery, and optoelectronics. Central to the realization of such applications, however, is the successful incorporation of a functional guest confined within the host framework. Here, we demonstrate, for the first time, the feasibility of scattering-type scanning near-field optical microscopy (s-SNOM) and nano-Fourier transform infrared (nanoFTIR) spectroscopy, in concert with density functional theory (DFT) calculations to reveal the vibrational characteristics of the Guest@MOF systems. Probing individual MOF crystals, we pinpoint the local molecular vibrations and, thus, shed new light on the host-guest interactions at the nanoscale. Our strategy not only confirms the successful encapsulation of luminescent guest molecules in the porous host framework in single crystals but also further provides a new methodology for nanoscale-resolved physical and chemical identification of wide-ranging framework materials and designer porous systems for advanced applications.

5.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946662

ABSTRACT

A series of rhodamine B (RhB) encapsulated zeolitic imidazolate framework-8 (RhB@ZIF-8) composite nanomaterials with different concentrations of guest loadings have been synthesized and characterized in order to investigate their applicability to solid-state white-light-emitting diodes (WLEDs). The nanoconfinement of the rhodamine B dye (guest) in the sodalite cages of ZIF-8 (host) is supported by fluorescence spectroscopic and photodynamic lifetime data. The quantum yield (QY) of the luminescent RhB@ZIF-8 material approaches unity when the guest loading is controlled at a low level: 1 RhB guest per ~7250 cages. We show that the hybrid (luminescent guest) LG@MOF material, obtained by mechanically mixing a suitably high-QY RhB@ZIF-8 red emitter with a green-emitting fluorescein@ZIF-8 "phosphor" with a comparably high QY, could yield a stable, intensity tunable, near-white light emission under specific test conditions described. Our results demonstrate a novel LG@MOF composite system exhibiting a good combination of photophysical properties and photostability, for potential applications in WLEDs, photoswitches, bioimaging and fluorescent sensors.

6.
Nat Mater ; 17(2): 174-179, 2018 02.
Article in English | MEDLINE | ID: mdl-29251723

ABSTRACT

A critical bottleneck for the use of natural gas as a transportation fuel has been the development of materials capable of storing it in a sufficiently compact form at ambient temperature. Here we report the synthesis of a porous monolithic metal-organic framework (MOF), which after successful packing and densification reaches 259 cm3 (STP) cm-3 capacity. This is the highest value reported to date for conformed shape porous solids, and represents a greater than 50% improvement over any previously reported experimental value. Nanoindentation tests on the monolithic MOF showed robust mechanical properties, with hardness at least 130% greater than that previously measured in its conventional MOF counterparts. Our findings represent a substantial step in the application of mechanically robust conformed and densified MOFs for high volumetric energy storage and other industrial applications.

7.
Chemistry ; 24(45): 11771-11778, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-29808943

ABSTRACT

Fluorous organic building blocks were utilized to develop two self-assembled, hydrophobic, fluorinated porous organic polymers (FPOPs), namely, FPOP-100 and FPOP-101. Comprehensive mechanical analyses of these functionalised triazine network polymers marked the introduction of mechanical stiffness among all porous organic network materials; the recorded stiffnesses are analogous to those of their organic-inorganic hybrid polymer congeners, that is, metal-organic frameworks. Furthermore, this study introduces a new paradigm for the simultaneous installation of mechanical stiffness and high surface hydrophobicity into polymeric organic networks, with the potential for transfer among all porous solids. Control experiments with non-fluorinated congeners underlined the key role of fluorine, in particular, bis-trifluoromethyl functionalization in realizing the dual features of mechanical stiffness and superhydrophobicity.

8.
Phys Chem Chem Phys ; 20(15): 10108-10113, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29589013

ABSTRACT

The structural flexibility of a topical zeolitic imidazolate framework with sodalite topology, termed ZIF-8, has been elucidated through liquid intrusion under moderate pressures (i.e. tens of MPa). By tracking the evolution of water intrusion pressure under cyclic conditions, we interrogate the role of the gate-opening mechanism controlling the size variation of the pore channels of ZIF-8. Interestingly, we demonstrate that its channel deformation is recoverable through structural relaxation over time, hence revealing the viscoelastic mechanical response in ZIF-8. We propose a simple approach employing a glycerol-water solution mixture, which can significantly enhance the sensitivity of intrusion pressure for the detection of structural deformation in ZIF-8. By leveraging the time-dependent gate-opening phenomenon in ZIF-8, we achieved a notable improvement (50%) in energy dissipation during multicycle mechanical deformation experiments.

9.
Phys Rev Lett ; 118(25): 255502, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28696751

ABSTRACT

We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (∼100 cm^{-1}), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO(O_{2}C-C_{6}H_{4}-CO_{2})]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (G_{min}).

10.
Phys Chem Chem Phys ; 18(13): 9079-87, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26972778

ABSTRACT

Understanding the mechanical properties of metal-organic frameworks (MOFs) is crucial not only to yield robust practical applications, but also to advance fundamental research underpinning the flexibility of a myriad of open-framework chemical compounds. Herein we present one of the most comprehensive structural analyses yet on MOF-mechanics: elucidating the complex elastic response of an isoreticular series of topical Zr-based MOFs, explaining all the important mechanical properties, and identifying major trends arising from systematic organic linker exchange. Ab initio density functional theory (DFT) was employed to establish the single-crystal elastic constants of the nanoporous MIL-140(A-D) structures, generating a complete 3-D representation of the principal mechanical properties, encompassing the Young's modulus, shear modulus, linear compressibility and Poisson's ratio. Of particular interest, we discovered significantly high values of both positive and negative linear compressibility and Poisson's ratio, whose framework molecular mechanisms responsible for such elastic anomalies have been fully revealed. In addition to pinpointing large elastic anisotropy and unusual physical properties, we analyzed the bulk modulus of isoreticular Zr-MOF compounds to understand the framework structural resistance against the hydrostatic pressure, and determined the averaged mechanical behaviour of bulk (polycrystalline) MOF materials important for the design of emergent applications.


Subject(s)
Metals/chemistry , Organic Chemicals/chemistry , Zirconium/chemistry , Elasticity , Quantum Theory
11.
Phys Rev Lett ; 113(21): 215502, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25479503

ABSTRACT

We present an unambiguous identification of low-frequency terahertz vibrations in the archetypal imidazole-based metal-organic framework (MOF) materials: ZIF-4, ZIF-7, and ZIF-8, all of which adopt a zeolite-like nanoporous structure. Using inelastic neutron scattering and synchrotron radiation far-infrared absorption spectroscopy, in conjunction with density functional theory (DFT), we have pinpointed all major sources of vibrational modes. Ab initio DFT calculations revealed the complex nature of the collective THz modes, which enable us to establish detailed correlations with experiments. We discover that low-energy conformational dynamics offers multiple pathways to elucidate novel physical phenomena observed in MOFs. New evidence demonstrates that THz modes are intrinsically linked, not only to anomalous elasticity underpinning gate-opening and pore-breathing mechanisms, but also to shear-induced phase transitions and the onset of structural instability.

12.
Chem Sci ; 15(26): 10056-10064, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966360

ABSTRACT

Tribo- and contact electrification remain poorly understood, baffling and discombobulating scientists for millennia. Despite the technology needed to harvest mechanical energy with triboelectric generators being incredibly rudimentary and the fact that a triboelectric output can be obtained from almost any two material combinations, research into triboelectric generator materials typically focuses on achieving the highest possible output; meanwhile, understanding trends and triboelectric behaviours of related but lower performing materials is often overlooked or not studied. Metal-organic frameworks, a class of typically highly porous and crystalline coordination polymers are excellent media to study to fill this knowledge gap. Their chemistry, topology and morphology can be individually varied while keeping other material properties constant. Here we study 5 closely related zeolitic-imidazolate type metal-organic frameworks for their triboelectric performance and behaviour by contact-separating each one with five counter materials. We elucidate the triboelectric electron transfer behaviour of each material, develop a triboelectric series and characterise the surface potential by Kelvin-probe force microscopy. From our results we draw conclusions on how the chemistry, morphology and topology affect the triboelectric output by testing and characterising our series of frameworks to help better understand triboelectric phenomena.

13.
Adv Sci (Weinh) ; 11(4): e2305070, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032122

ABSTRACT

Despite exhaled human breath having enabled noninvasive diabetes diagnosis, selective acetone vapor detection by fluorescence approach in the diabetic range (1.8-3.5 ppm) remains a long-standing challenge. A set of water-resistant luminescent metal-organic framework (MOF)-based composites have been reported for detecting acetone vapor in the diabetic range with a limit of detection of 200 ppb. The luminescent materials possess the ability to selectively detect acetone vapor from a mixture comprising nitrogen, oxygen, carbon dioxide, water vapor, and alcohol vapor, which are prevalent in exhaled breath. It is noteworthy that this is the first luminescent MOF material capable of selectively detecting acetone vapor in the diabetic range via a turn-on mechanism. The material can be reused within a matter of minutes under ambient conditions. Industrially pertinent electrospun luminescent fibers are likewise fabricated alongside various luminescent films for selective detection of ultratrace quantities of acetone vapor present in the air. Ab initio theoretical calculations combined with in situ synchrotron-based dosing studies uncovered the material's remarkable hypersensitivity toward acetone vapor. Finally, a freshly designed prototype fluorescence-based portable optical sensor is utilized as a proof-of-concept for the rapid detection of acetone vapor within the diabetic range.

14.
Chemistry ; 19(22): 7049-55, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23576441

ABSTRACT

The I2-sorption and -retention properties of several existing zeolitic imidazolate frameworks (ZIF-4, -8, -69) and a novel framework, ZIF-mnIm ([Zn(mnIm)2 ]; mnIm=4-methyl-5-nitroimidazolate), have been characterised using microanalysis, thermogravimetric analysis and X-ray diffraction. The topologically identical ZIF-8 ([Zn(mIm)2]; mIm=2-methylimidazolate) and ZIF-mnIm display similar sorption abilities, though strikingly different guest-retention behaviour upon heating. We discover that this guest retention is greatly enhanced upon facile amorphisation by ball milling, particularly in the case of ZIF-mnIm, for which I2 loss is retarded by as much as 200 °C. It is anticipated that this general approach should be applicable to the wide range of available metal-organic framework-type materials for the permanent storage of harmful guest species.

15.
Proc Natl Acad Sci U S A ; 107(22): 9938-43, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20479264

ABSTRACT

The mechanical properties of seven zeolitic imidazolate frameworks (ZIFs) based on five unique network topologies have been systematically characterized by single-crystal nanoindentation studies. We demonstrate that the elastic properties of ZIF crystal structures are strongly correlated to the framework density and the underlying porosity. For the systems considered here, the elastic modulus was found to range from 3 to 10 GPa, whereas the hardness property lies between 300 MPa and 1.1 GPa. Notably, these properties are superior to those of other metal-organic frameworks (MOFs), such as MOF-5. In substituted imidazolate frameworks, our results show that their mechanical properties are mainly governed by the rigidity and bulkiness of the substituted organic linkages. The framework topology and the intricate pore morphology can also influence the degree of mechanical anisotropy. Our findings present the previously undescribed structure-mechanical property relationships pertaining to hybrid open frameworks that are important for the design and application of new MOF materials.

16.
Commun Chem ; 6(1): 63, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016101

ABSTRACT

Understanding of the complex mechanical behavior of metal-organic frameworks (MOF) beyond their elastic limit will allow the design of real-world applications in chemical engineering, optoelectronics, energy conversion apparatus, and sensing devices. Through in situ compression of micropillars, the uniaxial stress-strain curves of a copper paddlewheel MOF (HKUST-1) were determined along two unique crystallographic directions, namely the (100) and (111) facets. We show strongly anisotropic elastic response where the ratio of the Young's moduli are E(111) ≈ 3.6 × E(100), followed by extensive plastic flows. Likewise, the yield strengths are considerably different, in which Y(111) ≈ 2 × Y(100) because of the underlying framework anisotropy. We measure the fracture toughness using micropillar splitting. While in situ tests revealed differential cracking behavior, the resultant toughness values of the two facets are comparable, yielding Kc ~ 0.5 MPa[Formula: see text]. This work provides insights of porous framework ductility at the micron scale under compression and failure by bonds breakage.

17.
Catal Sci Technol ; 13(12): 3551-3557, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37342794

ABSTRACT

We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.

18.
Adv Mater ; 35(44): e2306521, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37643739

ABSTRACT

Compressibility is a fundamental property of all materials. For fluids, that is, gases and liquids, compressibility forms the basis of technologies such as pneumatics and hydraulics and determines basic phenomena such as the propagation of sound and shock waves. In contrast to gases, liquids are almost incompressible. If the compressibility of liquids could be increased and controlled, new applications in hydraulics and shock absorption could result. Here, it is shown that dispersing hydrophobic porous particles into water gives aqueous suspensions with much greater compressibilities than any normal liquids such as water (specifically, up to 20 times greater over certain pressure ranges). The increased compressibility results from water molecules being forced into the hydrophobic pores of the particles under applied pressure. The degree of compression can be controlled by varying the amount of porous particles added. Also, the pressure range of compression can be reduced by adding methanol or increased by adding salt. In all cases, the liquids expand back to their original volume when the applied pressure is released. The approach shown here is simple and economical and could potentially be scaled up to give large amounts of highly compressible liquids.

19.
Phys Rev Lett ; 108(9): 095502, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463647

ABSTRACT

Using Brillouin scattering, we measured the single-crystal elastic constants (C(ij)'s) of a prototypical metal-organic framework (MOF): zeolitic imidazolate framework (ZIF)-8 [Zn(2-methylimidazolate)(2)], which adopts a zeolitic sodalite topology and exhibits large porosity. Its C(ij)'s under ambient conditions are (in GPa) C(11)=9.522(7), C(12)=6.865(14), and C(44)=0.967(4). Tensorial analysis of the C(ij)'s reveals the complete picture of the anisotropic elasticity in cubic ZIF-8. We show that ZIF-8 has a remarkably low shear modulus G(min) < or approximately 1 GPa, which is the lowest yet reported for a single-crystalline extended solid. Using ab initio calculations, we demonstrate that ZIF-8's C(ij)'s can be reliably predicted, and its elastic deformation mechanism is linked to the pliant ZnN(4) tetrahedra. Our results shed new light on the role of elastic constants in establishing the structural stability of MOF materials and thus their suitability for practical applications.

20.
Inorg Chem ; 51(20): 11198-209, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23030279

ABSTRACT

The structures of seven new transition metal frameworks featuring Mn, Co, or Zn and either the meso or chiral D and L isomers of the 2,3-dimethylsuccinate ligand are reported. Frameworks that exhibit two-dimensional covalently bonded layers with weak interlayer interactions can be made with all three cations by incorporation of the chiral isomers of the 2,3-dimethylsuccinate ligand. The formation of such structures, suitable for the creation of nanosheets via exfoliation, is, however, not as ubiquitous as is the case with the 2,2-dimethylsuccinate frameworks since frameworks that incorporate the meso-2,3-dimethylsuccinate ligand form three-dimensional structures. This clear distinction between the formation of structures with covalent connectivity in two and three dimensions, depending on the choice of 2,3-dimethylsuccinate isomer, is due to the different conformations adopted by the backbone of the ligand. The chiral isomer prefers to adopt an arrangement with its methyl and carboxylate groups gauche to the neighboring functional groups of the same type, while the meso-ligand prefers to adopt trans geometry. A gauche-arrangement of the methyl groups places them on the same side of the ligand, making this geometry ideal for the formation of layered structures; a trans-relationship leads to the methyl groups being further apart, reducing their steric hindrance and making it easier to accommodate them within a three-dimensional structure. The ease of exfoliation of the layered frameworks is examined and compared to those of known transition metal 2,2-dimethylsuccinate frameworks by means of UV-vis spectroscopy. It is suggested that layered frameworks with more corrugated surfaces exfoliate more rapidly. The size, structure, and morphology of the exfoliated nanosheets are also characterized. The magnetic properties of the paramagnetic frameworks reveal that only the three dimensionally covalently bonded phases containing meso-2,3-DMS in trans-arrangements order magnetically. These frameworks are antiferromagnets at low temperatures, although the Co compound undergoes an unusual antiferromagnetic to ferromagnetic transition with increasing applied magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL