Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37467750

ABSTRACT

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Subject(s)
Charcot-Marie-Tooth Disease , Neurodevelopmental Disorders , Animals , Humans , Mice , Cell Line , Charcot-Marie-Tooth Disease/genetics , DEAD-box RNA Helicases/genetics , Dichlorodiphenyl Dichloroethylene , DNA Helicases , Mammals , Neoplasm Proteins/genetics
2.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314705

ABSTRACT

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Subject(s)
Developmental Disabilities/genetics , Drosophila Proteins/genetics , Eye Diseases, Hereditary/genetics , Intellectual Disability/genetics , Karyopherins/genetics , Musculoskeletal Abnormalities/genetics , beta Karyopherins/genetics , ran GTP-Binding Protein/genetics , Alleles , Amino Acid Sequence , Animals , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Eye Diseases, Hereditary/metabolism , Eye Diseases, Hereditary/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genome, Human , Humans , Infant , Infant, Newborn , Intellectual Disability/metabolism , Intellectual Disability/pathology , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Male , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Neurons/metabolism , Neurons/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Whole Genome Sequencing , beta Karyopherins/metabolism , ran GTP-Binding Protein/metabolism
3.
Brain ; 146(4): 1420-1435, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36718090

ABSTRACT

Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Child , Humans , Spastic Paraplegia, Hereditary/genetics , Serine C-Palmitoyltransferase/genetics , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Cell Membrane/metabolism , Mammals/metabolism
4.
Genet Med ; 25(4): 100353, 2023 04.
Article in English | MEDLINE | ID: mdl-36481303

ABSTRACT

PURPOSE: Next-generation sequencing (NGS) has revolutionized the diagnostic process for rare/ultrarare conditions. However, diagnosis rates differ between analytical pipelines. In the National Institutes of Health-Undiagnosed Diseases Network (UDN) study, each individual's NGS data are concurrently analyzed by the UDN sequencing core laboratory and the clinical sites. We examined the outcomes of this practice. METHODS: A retrospective review was performed at 2 UDN clinical sites to compare the variants and diagnoses/candidate genes identified with the dual analyses of the NGS data. RESULTS: In total, 95 individuals had 100 diagnoses/candidate genes. There was 59% concordance between the UDN sequencing core laboratories and the clinical sites in identifying diagnoses/candidate genes. The core laboratory provided more diagnoses, whereas the clinical sites prioritized more research variants/candidate genes (P < .001). The clinical sites solely identified 15% of the diagnoses/candidate genes. The differences between the 2 pipelines were more often because of variant prioritization disparities than variant detection. CONCLUSION: The unique dual analysis of NGS data in the UDN synergistically enhances outcomes. The core laboratory provided a clinical analysis with more diagnoses and the clinical sites prioritized more research variants/candidate genes. Implementing such concurrent dual analyses in other genomic research studies and clinical settings can improve both variant detection and prioritization.


Subject(s)
Undiagnosed Diseases , United States/epidemiology , Humans , Genomics , Rare Diseases/diagnosis , Rare Diseases/genetics , High-Throughput Nucleotide Sequencing , Laboratories
5.
Am J Med Genet A ; 188(11): 3364-3368, 2022 11.
Article in English | MEDLINE | ID: mdl-35972026

ABSTRACT

There is a broad differential diagnosis of infantile hepatosplenomegaly, with some etiologies being debilitating and treatable. A structured approach to history, examination, and laboratory and radiographic findings is important in diagnosis. Herein, we present a case of Wolman disease presenting as hepatosplenomegaly in an infant. This case details important learning points to help distinguish the diagnosis of Wolman disease from other conditions with overlapping clinical features, such as hemophagocytic lymphohistiocytosis (HLH). The advent of enzyme replacement therapy has dramatically changed the natural history of Wolman disease, and this child showed remarkable improvement with treatment. This child was later found to have extensive adenopathy with retroperitoneal lymph node biopsy demonstrating diffuse infiltration by lipid-laden macrophages, fatty deposits, cholesterol crystals, and calcifications. Similar to the collection of characteristic cells in other lysosomal storage disorders, we postulate that this is characteristic of underlying Wolman disease. We conclude with a summary of learning points from this presentation on infantile hepatosplenomegaly, pertinent to the geneticist, pediatrician, and pediatric subspecialists.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Wolman Disease , Child , Cholesterol , Hepatomegaly/diagnosis , Humans , Infant , Lipids , Lymphohistiocytosis, Hemophagocytic/diagnosis , Splenomegaly/complications , Splenomegaly/diagnosis , Wolman Disease/diagnosis , Wolman Disease/drug therapy , Wolman Disease/genetics
6.
J Genet Couns ; 31(1): 59-70, 2022 02.
Article in English | MEDLINE | ID: mdl-34115423

ABSTRACT

The Genome Empowerment Scale (GEmS), developed as a research tool, assesses perspectives of parents of children with undiagnosed disorders about to undergo exome or genome sequencing related to the process of empowerment. We defined genomic healthcare empowerment as follows: perceived ability to understand and seek new information related to the genomic sequencing, manage emotions related to the diagnostic process and outcomes, and utilize genomic sequencing information to the betterment of the individual/child and family. The GEmS consists of four scales, two are primarily emotion-focused (Meaning of a Diagnosis, and Emotional Management of the Process) and two are action-oriented (Seeking Information and Support, and Implications and Planning). The purpose of this research was to provide a strategy for interpreting results from the GEmS and present illustrative cases. These illustrations should serve to facilitate use of the GEmS in the clinical and research arena, particularly with respect to guiding genetic counseling processes for parents of children with undiagnosed conditions.


Subject(s)
Genomics , Parents , Child , Delivery of Health Care , Family , Humans , Parents/psychology , Exome Sequencing
7.
Cogn Behav Neurol ; 34(3): 212-219, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34473673

ABSTRACT

The ectodermal dysplasias are a group of rare genetic disorders that are caused by abnormalities in cell and tissue development of the embryonic ectoderm. A paucity of research has systematically examined the cognitive, academic, and psychological phenotype of individuals with ectodermal dysplasia. We describe the neuropsychological profile of a female adolescent with ectodermal dysplasia with hypohidrosis. Using a battery of standardized tests, we assessed the adolescent's intellectual functioning, language processing, visuospatial and visuomotor functioning, perceptual reasoning, sensory-motor functioning, memory, executive functioning, academic functioning, emotional and behavioral functioning, and adaptive functioning. Results from the testing indicated that the adolescent possessed relative verbal strengths, with scores generally falling in the low average to average range. However, she exhibited severe deficits in visuospatial functioning, visuomotor construction/organization, visuomotor integration, visual memory, executive functioning, reading, and math. She also presented with symptoms of anxiety and depression but had relatively strong adaptive skills. Based on the testing results from our evaluation, the adolescent met the criteria for specific learning disorders with impairment in reading and math, generalized anxiety disorder, and major depressive disorder. To our knowledge, this is the first case report to comprehensively characterize the full neuropsychological and academic profile of an adolescent female with ectodermal dysplasia with hypohidrosis. Recommendations from the evaluation are presented to inform clinical practice with, and future research of, this population.


Subject(s)
Depressive Disorder, Major , Ectodermal Dysplasia , Hypohidrosis , Adolescent , Executive Function , Female , Humans , Neuropsychological Tests
8.
Hum Mutat ; 41(3): 632-640, 2020 03.
Article in English | MEDLINE | ID: mdl-31696996

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of disorders with predominant symptoms of lower-extremity weakness and spasticity. Despite the delineation of numerous genetic causes of HSP, a significant portion of individuals with HSP remain molecularly undiagnosed. Through exome sequencing, we identified five unrelated families with childhood-onset nonsyndromic HSP, all presenting with progressive spastic gait, leg clonus, and toe walking starting from 7 to 8 years old. A recurrent two-base pair deletion (c.426_427delGA, p.K143Sfs*15) in the UBAP1 gene was found in four families, and a similar variant (c.475_476delTT, p.F159*) was detected in a fifth family. The variant was confirmed to be de novo in two families and inherited from an affected parent in two other families. RNA studies performed in lymphocytes from one patient with the de novo c.426_427delGA variant demonstrated escape of nonsense-mediated decay of the UBAP1 mutant transcript, suggesting the generation of a truncated protein. Both variants identified in this study are predicted to result in truncated proteins losing the capacity of binding to ubiquitinated proteins, hence appearing to exhibit a dominant-negative effect on the normal function of the endosome-specific endosomal sorting complexes required for the transport-I complex.


Subject(s)
Carrier Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Mutation , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Age of Onset , Child , Female , Genetic Association Studies/methods , Genetic Loci , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Pedigree , Phenotype , Exome Sequencing
9.
Genet Med ; 22(7): 1269-1275, 2020 07.
Article in English | MEDLINE | ID: mdl-32366967

ABSTRACT

PURPOSE: Guidelines by professional organizations for assessing variant pathogenicity include the recommendation to utilize biologically relevant transcripts; however, there is variability in transcript selection by laboratories. METHODS: We describe three patients whose genomic results were incorrect, because alternative transcripts and tissue expression patterns were not considered by the commercial laboratories. RESULTS: In individual 1, a pathogenic coding variant in a brain-expressed isoform of CKDL5 was missed twice on sequencing, because the variant was intronic in the transcripts considered in analysis. In individual 2, a microdeletion affecting KMT2C was not reported on microarray, since deletions of proximal exons in this gene are seen in healthy individuals; however, this individual had a more distal deletion involving the brain-expressed KMT2C isoform, giving her a diagnosis of Kleefstra syndrome. Individual 3 was reported to have a pathogenic variant in exon 10 of OFD1 on exome, but had no typical features of the OFD1-related disorders. Since exon 10 is spliced from the more biologically relevant transcripts of OFD1, it was determined that he did not have an OFD1 disorder. CONCLUSION: These examples illustrate the importance of considering alternative transcripts as a potential confounder when genetic results are negative or discordant with the phenotype.


Subject(s)
Exome , Missed Diagnosis , Alternative Splicing/genetics , Exons/genetics , Female , Humans , Male , Protein Isoforms/genetics , Exome Sequencing
10.
Genet Med ; 21(1): 161-172, 2019 01.
Article in English | MEDLINE | ID: mdl-29907797

ABSTRACT

PURPOSE: Sixty to seventy-five percent of individuals with rare and undiagnosed phenotypes remain undiagnosed after exome sequencing (ES). With standard ES reanalysis resolving 10-15% of the ES negatives, further approaches are necessary to maximize diagnoses in these individuals. METHODS: In 38 ES negative patients an individualized genomic-phenotypic approach was employed utilizing (1) phenotyping; (2) reanalyses of FASTQ files, with innovative bioinformatics; (3) targeted molecular testing; (4) genome sequencing (GS); and (5) conferring of clinical diagnoses when pathognomonic clinical findings occurred. RESULTS: Certain and highly likely diagnoses were made in 18/38 (47%) individuals, including identifying two new developmental disorders. The majority of diagnoses (>70%) were due to our bioinformatics, phenotyping, and targeted testing identifying variants that were undetected or not prioritized on prior ES. GS diagnosed 3/18 individuals with structural variants not amenable to ES. Additionally, tentative diagnoses were made in 3 (8%), and in 5 individuals (13%) candidate genes were identified. Overall, diagnoses/potential leads were identified in 26/38 (68%). CONCLUSIONS: Our comprehensive approach to ES negatives maximizes the ES and clinical data for both diagnoses and candidate gene identification, without GS in the majority. This iterative approach is cost-effective and is pertinent to the current conundrum of ES negatives.


Subject(s)
Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Exome/genetics , Genetic Predisposition to Disease , Child , Developmental Disabilities/epidemiology , Female , Genomics , Humans , Male , Phenotype , Sequence Analysis, DNA , Exome Sequencing/methods , Whole Genome Sequencing
11.
Am J Med Genet A ; 173(5): 1219-1225, 2017 May.
Article in English | MEDLINE | ID: mdl-28317311

ABSTRACT

Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX) syndrome is a rare, X-linked recessive disease that affects regulatory T cells (Tregs) resulting in diarrhea, enteropathy, eczema, and insulin-dependent diabetes mellitus. IPEX syndrome is caused by pathogenic alterations in FOXP3 located at Xp11.23. FOXP3 encodes a transcription factor that interacts with several partners, including NFAT and NF-κB, and is necessary for the proper cellular differentiation of Tregs. Although variable, the vast majority of IPEX syndrome patients have onset of disease during infancy with severe enteropathy. Only five families with prenatal presentation of IPEX syndrome have been reported. Here, we present two additional prenatal onset cases with novel inherited frameshift pathogenic variants in FOXP3 that generate premature stop codons. Ultrasound findings in the first patient identified echogenic bowel, echogenic debris, scalp edema, and hydrops. In the second patient, ultrasound findings included polyhydramnios with echogenic debris, prominent fluid-filled loops of bowel, and echogenic bowel. These cases further broaden the phenotypic spectrum of IPEX syndrome by describing previously unappreciated prenatal ultrasound findings associated with the disease.


Subject(s)
Cell Differentiation/genetics , Diabetes Mellitus, Type 1/congenital , Diarrhea/diagnosis , Diarrhea/genetics , Forkhead Transcription Factors/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Immune System Diseases/congenital , Adult , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/physiopathology , Diarrhea/physiopathology , Female , Fetus , Forkhead Transcription Factors/immunology , Frameshift Mutation , Genetic Diseases, X-Linked/physiopathology , Humans , Immune System Diseases/diagnosis , Immune System Diseases/genetics , Immune System Diseases/physiopathology , Male , NF-kappa B/genetics , NFATC Transcription Factors/genetics , Pregnancy , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Ultrasonography, Prenatal
12.
J Pediatr ; 166(4): 1075-8.e1, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25687635

ABSTRACT

Pompe disease (PD), or glycogen storage disease type II, results from deficiency of acid α-glucosidase. Patients with infantile-onset PD die by early childhood if untreated. Patient survival has improved with enzyme replacement therapy. We report a case series of 8 patients with infantile-onset PD on enzyme replacement therapy with premature pubarche.


Subject(s)
Enzyme Replacement Therapy/methods , Glycogen Storage Disease Type II/therapy , Puberty , Sexual Development , Child , Child, Preschool , Female , Follow-Up Studies , Glycogen Storage Disease Type II/physiopathology , Humans , Infant , Male , Prognosis , Retrospective Studies
13.
J Infect Dis ; 208(10): 1695-704, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23904295

ABSTRACT

Candida albicans is a leading pathogen in infections of central venous catheters, which are frequently infused with heparin. Binding of C. albicans to medically relevant concentrations of soluble and plate-bound heparin was demonstrable by confocal microscopy and enzyme-linked immunosorbent assay (ELISA). A sequence-based search identified 34 C. albicans surface proteins containing ≥1 match to linear heparin-binding motifs. The virulence factor Int1 contained the most putative heparin-binding motifs (n = 5); peptides encompassing 2 of 5 motifs bound to heparin-Sepharose. Alanine substitution of lysine residues K805/K806 in 804QKKHQIHK811 (motif 1 of Int1) markedly attenuated biofilm formation in central venous catheters in rats, whereas alanine substitution of K1595/R1596 in 1593FKKRFFKL1600 (motif 4 of Int1) did not impair biofilm formation. Affinity-purified immunoglobulin G (IgG) recognizing motif 1 abolished biofilm formation in central venous catheters; preimmune IgG had no effect. After heparin treatment of C. albicans, soluble peptides from multiple C. albicans surface proteins were detected, such as Eno1, Pgk1, Tdh3, and Ssa1/2 but not Int1, suggesting that heparin changes candidal surface structures and may modify some antigens critical for immune recognition. These studies define a new mechanism of biofilm formation for C. albicans and a novel strategy for inhibiting catheter-associated biofilms.


Subject(s)
Biofilms , Candida albicans/physiology , Fungal Proteins/metabolism , Heparin/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Candida albicans/drug effects , Candida albicans/ultrastructure , Central Venous Catheters/microbiology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Heparin/pharmacology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Binding , Rats
14.
Mol Genet Metab ; 108(2): 142-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23266370

ABSTRACT

Pompe Disease (PD) is a lysosomal storage disease caused by acid α-glucosidase deficiency. The infantile form typically results in death in the first year of life. Patient survival has improved with enzyme replacement therapy (ERT), but new complications are being recognized. We report three cases of infantile onset PD on ERT who present with a new finding of poor anal tone, a finding that requires special attention for further complications such as rectal prolapse.


Subject(s)
Anal Canal/physiopathology , Glycogen Storage Disease Type II/complications , Muscle Hypotonia/etiology , Child, Preschool , Enzyme Replacement Therapy , Female , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Humans , Infant
15.
Orphanet J Rare Dis ; 18(1): 269, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667351

ABSTRACT

BACKGROUND: A recurrent de novo variant (c.892C>T) in NACC1 causes a neurodevelopmental disorder with epilepsy, cataracts, feeding difficulties, and delayed brain myelination (NECFM). An unusual and consistently reported feature is episodic extreme irritability and inconsolability. We now characterize these episodes, their impact on the family, and ascertain treatments that may be effective. Parents of 14 affected individuals provided narratives describing the irritability episodes, including triggers, behavioral and physiological changes, and treatments. Simultaneously, parents of 15 children completed the Non-communicating Children's Pain Checklist-Revised (NCCPC-R), a measure to assess pain in non-verbal children. RESULTS: The episodes of extreme irritability include a prodromal, peak, and resolving phase, with normal periods in between. The children were rated to have extreme pain-related behaviors on the NCCPC-R scale, although it is unknown whether the physiologic changes described by parents are caused by pain. Attempted treatments included various classes of medications, with psychotropic and sedative medications being most effective (7/15). Nearly all families (13/14) describe how the episodes have a profound impact on their lives. CONCLUSIONS: NECFM caused by the recurrent variant c.892C>T is associated with a universal feature of incapacitating episodic irritability of unclear etiology. Further understanding of the pathophysiology can lead to more effective therapeutic strategies.


Subject(s)
Brain , Cataract , Child , Humans , Hypnotics and Sedatives , Pain/genetics , Parents , Rare Diseases , Neoplasm Proteins , Repressor Proteins
16.
Dis Model Mech ; 16(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37565267

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain 4 (KLC4) that is suspected to be associated with autosomal-dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized Caenorhabditis elegans model in which klc-2 was replaced by human KLC4 (referred to as hKLC4) and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2. Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality, with significant defects in nuclear migration when homozygous and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late-onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and to use it to test the significance of five variants of uncertain significance in the human gene KLC4.


Subject(s)
Spastic Paraplegia, Hereditary , Animals , Humans , Spastic Paraplegia, Hereditary/genetics , Caenorhabditis elegans/genetics , Mutation/genetics , Models, Animal , Biological Transport , Pedigree
17.
bioRxiv ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36789438

ABSTRACT

Hereditary spastic paraplegia (HSP) is a group of degenerative neurological disorders. We identified a variant in human kinesin light chain KLC4 that is suspected to be associated with autosomal dominant HSP. How this and other variants relate to pathologies is unknown. We created a humanized C. elegans model where klc- 2 was replaced with human KLC4 and assessed the extent to which hKLC4 retained function in the worm. We observed a slight decrease in motility but no nuclear migration defects in the humanized worms, suggesting that hKLC4 retains much of the function of klc-2 . Five hKLC4 variants were introduced into the humanized model. The clinical variant led to early lethality with significant defects in nuclear migration when homozygous, and a weak nuclear migration defect when heterozygous, possibly correlating with the clinical finding of late onset HSP when the proband was heterozygous. Thus, we were able to establish humanized C. elegans as an animal model for HSP and use it to test the significance of five variants of uncertain significance in the human gene KLC4 . Summary Statement: We identified a variant in KLC4 associated with Hereditary Spastic Paraplegia. The variant had physiological relevance in a humanized C. elegans model where we replaced klc-2 with human KLC4 .

18.
Kidney Med ; 5(2): 100585, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36712315

ABSTRACT

Rationale & Objective: There has been an increasing demand for the expertise provided by a renal genetics clinic. Such programs are limited in the United States and typically operate in a genomics research setting. Here we report a 3-year, real-world, single-center renal genetics clinic experience. Study Design: Retrospective cohort. Setting & Participants: Outpatient cases referred to the renal genetics clinic of the Cleveland Clinic between January 2019 and March 2022 were reviewed. Analytical Approach: Clinical and laboratory characteristics were analyzed. All genetic testing was performed in clinical labs. Results: 309 new patients referred from 15 specialties were evaluated, including 118 males and 191 females aged 35.1 ± 20.3 years. Glomerular diseases were the leading presentation followed by cystic kidney diseases, electrolyte disorders, congenital anomalies of kidneys and urinary tract, nephrolithiasis, and tubulointerstitial kidney diseases. Dysmorphic features were noted in 27 (8.7%) patients. Genetic testing was recommended in 292 (94.5%) patients including chromosomal microarray (8.9%), single-gene tests (19.5%), multigene panels (77.3%), and exome sequencing (17.5%). 80.5% of patients received insurance coverage for genetic testing. 45% (115/256) of patients had positive results, 25% (64/256) had variants of unknown significance, and 22.3% (57/256) had negative results. 43 distinct monogenic disorders were diagnosed. Family history of kidney disease was present in 52.8% of patients and associated with positive genetic findings (OR, 2.28; 95% CI, 1.40-3.74). 69% of patients with positive results received a new diagnosis and/or a change in the diagnosis. Among these, 39.7% (31/78) of patients received a significant change in disease management. Limitations: Retrospective and single-center study. Conclusions: The renal genetics clinic plays important roles in the diagnosis and management of patients with genetic kidney diseases. Multigene panels are the most frequently used testing modality with a high diagnostic yield. Family history of kidney disease is a strong indication for renal genetics clinic referral.

19.
J Pers Med ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422100

ABSTRACT

Rapid genome sequencing in critically ill infants is increasingly identified as a crucial test for providing targeted and informed patient care. We report the outcomes of a pilot study wherein eight critically ill neonates received rapid whole genome sequencing with parental samples in an effort to establish a prompt diagnosis. Our pilot study resulted in a 37.5% diagnostic rate by whole genome sequencing alone and an overall 50% diagnostic rate for the cohort. We describe how the diagnoses led to identification of additional affected relatives and a change in management, the limitations of rapid genome sequencing, and some of the challenges with sample collection. Alongside this pilot study, our site simultaneously established a research protocol pipeline that will allow us to conduct research-based genomic testing in the cases for which a diagnosis was not reached by rapid genome sequencing or other available clinical testing. Here we describe the benefits, limitations, challenges, and potential for rapid whole genome sequencing to be incorporated into routine clinical evaluation in the neonatal period.

20.
Article in English | MEDLINE | ID: mdl-29970384

ABSTRACT

Recent evidence has implicated EFL1 in a phenotype overlapping Shwachman-Diamond syndrome (SDS), with the functional interplay between EFL1 and the previously known causative gene SBDS accounting for the similarity in clinical features. Relatively little is known about the phenotypes associated with pathogenic variants in the EFL1 gene, but the initial indication was that phenotypes may be more severe, when compared with SDS. We report a pediatric patient who presented with a metaphyseal dysplasia and was found to have biallelic variants in EFL1 on reanalysis of trio whole-exome sequencing data. The variant had not been initially reported because of the research laboratory's focus on de novo variants. Subsequent phenotyping revealed variability in her manifestations. Although her metaphyseal abnormalities were more severe than in the original reported cohort with EFL1 variants, the bone marrow abnormalities were generally mild, and there was equivocal evidence for pancreatic insufficiency. Despite the limited number of reported patients, variants in EFL1 appear to cause a broader spectrum of symptoms that overlap with those seen in SDS. Our report adds to the evidence of EFL1 being associated with an SDS-like phenotype and provides information adding to our understanding of the phenotypic variability of this disorder. Our report also highlights the value of exome data reanalysis when a diagnosis is not initially apparent.


Subject(s)
Bone Marrow Diseases/genetics , Exocrine Pancreatic Insufficiency/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/physiology , Lipomatosis/genetics , Adolescent , Bone Marrow Diseases/diagnosis , Exocrine Pancreatic Insufficiency/diagnosis , Female , Genetic Variation/genetics , Humans , Lipomatosis/diagnosis , Mutation , Osteochondrodysplasias/genetics , Osteochondrodysplasias/physiopathology , Peptide Elongation Factors , Phenotype , Proteins/genetics , Ribonucleoprotein, U5 Small Nuclear , Shwachman-Diamond Syndrome , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL