Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proc Natl Acad Sci U S A ; 121(35): e2401916121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172788

ABSTRACT

Soil organic carbon (SOC) is the largest carbon pool in terrestrial ecosystems and plays a crucial role in mitigating climate change and enhancing soil productivity. Microbial-derived carbon (MDC) is the main component of the persistent SOC pool. However, current formulas used to estimate the proportional contribution of MDC are plagued by uncertainties due to limited sample sizes and the neglect of bacterial group composition effects. Here, we compiled the comprehensive global dataset and employed machine learning approaches to refine our quantitative understanding of MDC contributions to total carbon storage. Our efforts resulted in a reduction in the relative standard errors in prevailing estimations by an average of 71% and minimized the effect of global variations in bacterial group compositions on estimating MDC. Our estimation indicates that MDC contributes approximately 758 Pg, representing approximately 40% of the global soil carbon stock. Our study updated the formulas of MDC estimation with improving the accuracy and preserving simplicity and practicality. Given the unique biochemistry and functioning of the MDC pool, our study has direct implications for modeling efforts and predicting the land-atmosphere carbon balance under current and future climate scenarios.


Subject(s)
Carbon , Soil Microbiology , Soil , Carbon/metabolism , Carbon/analysis , Soil/chemistry , Uncertainty , Climate Change , Ecosystem , Bacteria/metabolism , Carbon Sequestration , Machine Learning , Carbon Cycle
2.
Nucleic Acids Res ; 52(9): 5107-5120, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38554113

ABSTRACT

Sirtuin 2 (SIRT2) regulates the maintenance of genome integrity by targeting pathways of DNA damage response and homologous recombination repair. However, whether and how SIRT2 promotes base excision repair (BER) remain to be determined. Here, we found that independent of its catalytic activity SIRT2 interacted with the critical glycosylase OGG1 to promote OGG1 recruitment to its own promoter upon oxidative stress, thereby enhancing OGG1 promoter activity and increasing BER efficiency. Further studies revealed that SIRT2 was phosphorylated on S46 and S53 by ATM/ATR upon oxidative stress, and SIRT2 phosphorylation enhanced the SIRT2-OGG1 interaction and mediated the stimulatory effect of SIRT2 on OGG1 promoter activity. We also characterized 37 cancer-derived SIRT2 mutants and found that 5 exhibited the loss of the stimulatory effects on OGG1 transcription. Together, our data reveal that SIRT2 acts as a tumor suppressor by promoting OGG1 transcription and increasing BER efficiency in an ATM/ATR-dependent manner.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Glycosylases , DNA Repair , Sirtuin 2 , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Humans , Sirtuin 2/metabolism , Sirtuin 2/genetics , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Phosphorylation , Promoter Regions, Genetic , Oxidative Stress , Transcriptional Activation , HEK293 Cells , DNA Damage , Transcription, Genetic , Cell Line, Tumor , Excision Repair
3.
J Cell Biochem ; 125(3): e30529, 2024 03.
Article in English | MEDLINE | ID: mdl-38308620

ABSTRACT

Sept8 is a vesicle associated protein and there are two typical transcriptional variants (Sept8-204 and Sept8-201) expressed in mice brain. Interestingly, the coexpression of Sept8-204/Sept5 induces the formation of small sized vesicle-like structure, while that of the Sept8-201/Sept5 produces large puncta. Sept8 is previously shown to be palmitoylated. Here it was further revealed that protein palmitoylation is required for Sept8-204/Sept5 to maintain small sized vesicle-like structure and colocalize with synaptophysin, since either the expression of nonpalmitoylated Sept8-204 mutant (Sept8-204-3CA) or inhibiting Sept8-204 palmitoylation by 2-BP with Sept5 produces large puncta, which barely colocalizes with synaptophysin (SYP). Moreover, it was shown that the dynamic palmitoylation of Sept8-204 is controlled by ZDHHC17 and PPT1, loss of ZDHHC17 decreases Sept8-204 palmitoylation and induces large puncta, while loss of PPT1 increases Sept8-204 palmitoylation and induces small sized vesicle-like structure. Together, these findings suggest that palmitoylation is essential for the maintenance of the small sized vesicle-like structure for Sept8-204/Sept5, and may hint their important roles in synaptic functions.


Subject(s)
Lipoylation , Septins , Animals , Mice , Cell Cycle Proteins/metabolism , Septins/genetics , Septins/metabolism , Synaptophysin/genetics , Synaptophysin/metabolism
4.
Article in English | MEDLINE | ID: mdl-39143669

ABSTRACT

OBJECTIVES: In recent years, the use of shear-wave elastography (SWE) as a diagnostic tool for detecting malignant breast lesions has shown promising results. This study aims to determine the clinical diagnostic value of SWE in detecting malignant nipple retraction. METHODS: Both US and SWE (Philips EPIQ7 system) were performed for 41 consecutive patients with nipple retraction (56 nipples). The mean, median, and maximum tissue elasticity values (in kilopascals) were determined for each nipple by using SWE. The sensitivity, specificity, and overall accuracy of each measurement was determined by using the surgical pathology results or clinical diagnosis as the gold standard. RESULTS: Of the 56 retracted nipples, 32 were due to benign lesions, and 24 were due to malignant lesions. No significant differences in dimensions or echo features were found between the benign and malignant groups. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the color Doppler flow imaging (CDFI) pattern were 63.89% (23/36), 95% (19/20), 95.83 (23/24), 59.38 (19/32), and 75% (42/56), respectively; the corresponding values for median elasticity on SWE were 88.46% (23/26), 96.67% (29/30), 95.83 (23/24), 90.63 (29/32), and 92.85 (52/56), respectively. CONCLUSIONS: The addition of SWE to conventional US could help differentiate benign from malignant lesions associated with nipple retraction.

5.
Int J Qual Health Care ; 36(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38156423

ABSTRACT

China's population is ageing, affecting trends in social development and basic national conditions. More attention must be paid to the lack of care needs assessments for the elderly in China's pension institutions. This paper discusses a systematic evaluation of the care needs of the elderly in China's elderly care institutions. Literature was collected and synthesized after a search of the Web of Science, PubMed, and other databases for works published up to August 2021. Relevant content is proposed, including the name of the first author, publication date, study area, and sample size. Exactly 18 articles were included in the literature, documents that reported on a total of 7277 elderly people. The results showed a combined demand rate of primary care needs ≥50%. The top five needs included mental/psychological (76%), tranquillity/care (73%), living/environmental (71%), medical treatment (64%), and preventive healthcare (64%). The combined demand rate of secondary care needs was ≥50%. The top five needs included 79% for room/laundry/cleaning, 77% for psychological comfort and nursing, 73% for end-of-life care, 70% for disease diagnosis and treatment, and 69% for physical examination. The health needs of older people are diverse and focus mainly on mental/psychological, tranquility/care, living/environmental (71%), pharmacotherapy, and preventive healthcare.


Subject(s)
Delivery of Health Care , Terminal Care , Humans , Aged , Aging , Needs Assessment , China
6.
Angew Chem Int Ed Engl ; 63(33): e202407481, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38840295

ABSTRACT

The design of heterojunctions that mimic natural photosynthetic systems holds great promise for enhancing photoelectric response. However, the limited interfacial space charge layer (SCL) often fails to provide sufficient driving force for the directional migration of inner charge carriers. Drawing inspiration from the electron transport chain (ETC) in natural photosynthesis system, we developed a novel anisotropic dual S-scheme heterojunction artificial photosynthetic system composed of Bi2O3-BiOBr-AgI for the first time, with Bi2O3 and AgI selectively distributed along the bicrystal facets of BiOBr. Compared to traditional semiconductors, the anisotropic carrier migration in BiOBr overcomes the recombination resulting from thermodynamic diffusion, thereby establishing a potential ETC for the directional migration of inner charge carriers. Importantly, this pioneering bioinspired design overcomes the limitations imposed by the limited distribution of SCL in heterojunctions, resulting in a remarkable 55-fold enhancement in photoelectric performance. Leveraging the etching of thiols on Ag-based materials, this dual S-scheme heterojunction is further employed in the construction of photoelectrochemical sensors for the detection of acetylcholinesterase and organophosphorus pesticides.

7.
Nat Commun ; 15(1): 4761, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834563

ABSTRACT

Microswimmers are considered promising candidates for active cargo delivery to benefit a wide spectrum of biomedical applications. Yet, big challenges still remain in designing the microswimmers with effective propelling, desirable loading and adaptive releasing abilities all in one. Inspired by the morphology and biofunction of spermatozoa, we report a one-step formation strategy of polymorphous sperm-like magnetic microswimmers (PSMs) by developing a vortex turbulence-assisted microfluidics (VTAM) platform. The fabricated PSM is biodegradable with a core-shell head and flexible tail, and their morphology can be adjusted by vortex flow rotation speed and calcium chloride solution concentration. Benefiting from the sperm-like design, our PSM exhibits both effective motion ability under remote mag/netic actuation and protective encapsulation ability for material loading. Further, it can also realize the stable sustain release after alginate-chitosan-alginate (ACA) layer coating modification. This research proposes and verifies a new strategy for the sperm-like microswimmer construction, offering an alternative solution for the target delivery of diverse drugs and biologics for future biomedical treatment. Moreover, the proposed VTAM could also be a general method for other sophisticated polymorphous structures fabrication that isn't achievable by conventional laminar flow.

8.
RSC Adv ; 14(1): 405-412, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38188982

ABSTRACT

As one of the most promising types of label-free nanopores has great potential for DNA sequencing via fast detection of different DNA bases. As one of the most promising types of label-free nanopores, two-dimensional nanopore materials have been developed over the past two decades. However, how to detect different DNA bases efficiently and accurately is still a challenging problem. In the present work, the translocation of four homogeneous DNA strands (i.e., poly(A)20, poly(C)20, poly(G)20, and poly(T)20) through two-dimensional transition-metal carbide (MXene) membrane nanopores with different surface terminal groups is investigated via all-atom molecular dynamics simulations. Interestingly, it is found that the four types of bases can be distinguished by different ion currents and dwell times when they are transported through the Ti3C2(OH)2 nanopore. This is mainly attributed to the different orientation and position distributions of the bases, the hydrogen bonding inside the MXene nanopore, and the interaction of the ssDNA with the nanopore. The present study enhances the understanding of the interaction between DNA strands and MXene nanopores with different functional groups, which may provide useful guidelines for the design of MXene-based devices for DNA sequencing in the future.

9.
RSC Adv ; 14(7): 4730-4733, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38318628

ABSTRACT

A heterophase structure combining semiconducting 2H- and metallic 1T-MoS2 exhibits significantly enhanced photoelectrochemical performance due to the electrical coupling and synergistic effect between the phases. Therefore, site-selective effective phase engineering is crucial for the fabrication of MoS2-based photoelectrochemical devices. Here, we employed a flash phase engineering (FPE) strategy to precisely fabricate a 2H-1T heterophase structure. This technique allows simple, efficient, and precise control over the micropatterning of MoS2 nanofilms while enabling site-selective phase transition from the 1T to the 2H phase. The detection of reduced glutathione (GSH) showed an approximately 5-fold increase in sensitivity when using the electrode fabricated by FPE.

10.
ACS Omega ; 9(24): 26133-26148, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911764

ABSTRACT

Antimicrobial peptides (AMPs) are a type of biomaterial used against multidrug resistant (MDR) bacteria. This study reports the design of a peptide family rich in tryptophan and lysine obtained by optimizing a natural AMP using single factor modification and pheromone hybridization to expedite the penetration and improve the antimicrobial activity of AMPs. S-4, L-4, and P-4 showed α-helical structures, exhibited extremely fast membrane penetration rates in vitro, and could kill MDR bacteria efficiently within 30 min. Intracellular fluorescence localization suggested rapid membrane-penetrating of AMPs within 1 min, making it more difficult for bacteria to develop resistance. Furthermore, they could effectively inhibit and destroy bacterial biofilms with dual antimicrobial and antibiofilm activity. In the treatment of skin infections caused by MDR-Acinetobacter baumannii in vivo , AMPs could effectively alleviate inflammation without toxic side effects. Additionally, the triple antimicrobial damage of AMPs was described in detail. AMPs rapidly penetrate the cell membrane, inducing cell membrane damage, triggering oxidative damage with a storm of reactive oxygen species and leading to bacterial death through leakage of cellular contents by complexing with DNA. The multiple damage is an important means by which AMPs can prevent bacterial resistance adequately.

11.
Nat Commun ; 15(1): 1040, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310090

ABSTRACT

Counterfeiting has become a serious global problem, causing worldwide losses and disrupting the normal order of society. Physical unclonable functions are promising hardware-based cryptographic primitives, especially those generated by chemical processes showing a massive challenge-response pair space. However, current chemical-based physical unclonable function devices typically require complex fabrication processes or sophisticated characterization methods with only binary (bit) keys, limiting their practical applications and security properties. Here, we report a flexible laser printing method to synthesize unclonable electronics with high randomness, uniqueness, and repeatability. Hexadecimal resistive keys and binary optical keys can be obtained by the challenge with an ohmmeter and an optical microscope. These readout methods not only make the identification process available to general end users without professional expertise, but also guarantee device complexity and data capacity. An adopted open-source deep learning model guarantees precise identification with high reliability. The electrodes and connection wires are directly printed during laser writing, which allows electronics with different structures to be realized through free design. Meanwhile, the electronics exhibit excellent mechanical and thermal stability. The high physical unclonable function performance and the widely accessible readout methods, together with the flexibility and stability, make this synthesis strategy extremely attractive for practical applications.

12.
Environ Sci Process Impacts ; 26(5): 915-927, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38618896

ABSTRACT

There is growing concern about the transfer of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in airborne particulate matter. In this study, we investigated the effects of various types of carbonaceous particulate matter (CPM) on the transfer of ARGs in vitro. The results showed that CPM promoted the transfer of ARGs, which was related to the concentration and particle size. Compared with the control group, the transfer frequency was 95.5, 74.7, 65.4, 14.7, and 3.8 times higher in G (graphene), CB (carbon black), NGP (nanographite powder), GP1.6 (graphite powder 1.6 micron), and GP45 (graphite powder 45 micron) groups, respectively. Moreover, the transfer frequency gradually increased with the increase in CPM concentration, while there was a negative relationship between the CPM particle size and conjugative transfer frequency. In addition, the results showed that CPM could promote the transfer of ARGs by increasing ROS, as well as activating the SOS response and expression of conjugative transfer-related genes (trbBp, trfAp, korA, kroB, and trbA). These findings are indicative of the potential risk of CPM for the transfer of ARGs in the environment, enriching our understanding of environmental pollution and further raising awareness of environmental protection.


Subject(s)
Air Pollutants , Gene Transfer, Horizontal , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Drug Resistance, Microbial/genetics , Particle Size , Genes, Bacterial , Drug Resistance, Bacterial/genetics
13.
Anal Chim Acta ; 1316: 342875, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969433

ABSTRACT

BACKGROUND: Indole-3-acetic acid (IAA) and salicylic acid (SA), pivotal regulators in plant growth, are integral to a variety of plant physiological activities. The ongoing and simultaneous monitoring of these hormones in vivo enhances our comprehension of their interactive and regulatory roles. Traditional detection methods, such as liquid chromatography-mass spectrometry, cannot obtain precise and immediate information on IAA and SA due to the complexity of sample processing. In contrast, the electrochemical detection method offers high sensitivity, rapid response times, and compactness, making it well-suited for in vivo or real-time detection applications. RESULTS: A microneedle electrochemical sensor system crafted from disposable stainless steel (SS) wire was specifically designed for the real-time assessment of IAA and SA in plant in situ. This sensor system included a SS wire (100 µm diameter) coated with carbon cement and multi-walled carbon nanotubes, a plain platinum wire (100 µm diameter), and an Ag/AgCl wire (100 µm diameter). Differential pulse voltammetry and amperometry were adopted for detecting SA and IAA within the range of 0.1-20 µM, respectively. This sensor was applied to track IAA and SA fluctuations in tomato leaves during PstDC3000 infection, offering continuous data. Observations indicated an uptick in SA levels following infection, while IAA production was suppressed. The newly developed disposable SS wire-based microneedle electrochemical sensor system is economical, suitable for mass production, and inflicts minimal damage during the monitoring of SA and IAA in plant tissues. SIGNIFICANCE: This disposable microneedle electrochemical sensor facilitates in vivo detection of IAA and SA in smaller plant tissues and allows for long-time monitoring of their concentrations, which not only propels research into the regulatory and interaction mechanisms of IAA and SA but also furnishes essential tools for advancing precision agriculture.


Subject(s)
Electrochemical Techniques , Indoleacetic Acids , Plant Leaves , Salicylic Acid , Solanum lycopersicum , Stainless Steel , Solanum lycopersicum/chemistry , Indoleacetic Acids/analysis , Salicylic Acid/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Stainless Steel/chemistry , Electrochemical Techniques/instrumentation , Needles , Plant Diseases/microbiology
14.
Front Psychol ; 14: 1298485, 2023.
Article in English | MEDLINE | ID: mdl-38187411

ABSTRACT

Introduction: The parent-child attachment has a significant impact on adolescents' mental health. However, the influence of psychological quality and coping styles on this connection remains unknown. This study examined the relationship between parent-child attachment and adolescent mental health, by exploring the mediating role of psychological quality and the moderating role of coping styles. Methods: A total of 633 young adolescents participated in this study after signing informed consent. They anonymously completed questionnaires including the Parent and Peer Attachment Scale (Parent Attachment Section), the Coping Styles Inventory for Middle School Students, the Brief Version of the Psychological Quality Inventory for Middle School Students, and the Chinese Middle School Students'Psychological Quality Inventory. After controlling for gender, grade, left-behind category, only-child status, and family structure. Results: The moderated mediation model yielded the following findings: (a) parent-child attachment significantly and positively predicted adolescents'mental health; (b) psychological quality partially mediated the relationship between parent-child attachment and adolescents' mental health; (c) the association between psychological quality and mental health was moderated by task-focused coping. Discussion: This moderation effect was more substantial for students with low task-focused coping behaviors, which aligns with the "exclusionary hypothesis" model. Therefore, our results indicate that parent-child attachment indirectly impacts mental health, influenced by internal and external factors. These findings carry significant implications for safeguarding and promoting adolescents' mental well-being.

SELECTION OF CITATIONS
SEARCH DETAIL