Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Genes Dev ; 31(23-24): 2343-2360, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29326336

ABSTRACT

The oncogenic transcription factor TAL1/SCL induces an aberrant transcriptional program in T-cell acute lymphoblastic leukemia (T-ALL) cells. However, the critical factors that are directly activated by TAL1 and contribute to T-ALL pathogenesis are largely unknown. Here, we identified AT-rich interactive domain 5B (ARID5B) as a collaborating oncogenic factor involved in the transcriptional program in T-ALL. ARID5B expression is down-regulated at the double-negative 2-4 stages in normal thymocytes, while it is induced by the TAL1 complex in human T-ALL cells. The enhancer located 135 kb upstream of the ARID5B gene locus is activated under a superenhancer in T-ALL cells but not in normal T cells. Notably, ARID5B-bound regions are associated predominantly with active transcription. ARID5B and TAL1 frequently co-occupy target genes and coordinately control their expression. ARID5B positively regulates the expression of TAL1 and its regulatory partners. ARID5B also activates the expression of the oncogene MYC Importantly, ARID5B is required for the survival and growth of T-ALL cells, and forced expression of ARID5B in immature thymocytes results in thymus retention, differentiation arrest, radioresistance, and tumor formation in zebrafish. Our results indicate that ARID5B reinforces the oncogenic transcriptional program by positively regulating the TAL1-induced regulatory circuit and MYC in T-ALL, thereby contributing to T-cell leukemogenesis.


Subject(s)
Carcinogenesis/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cell Survival/genetics , DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Profiling , Genes, myc/genetics , HEK293 Cells , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Protein Binding , Protein Domains/genetics , Thymocytes/metabolism , Thymus Gland/growth & development , Transcription Factors/genetics , Transcriptional Activation/genetics , Zebrafish
2.
Haematologica ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855064

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy derived from thymic T-cell precursors. Approximately 40-60% of T-ALL cases exhibit aberrant overexpression of the TAL1 oncogenic transcription factor. Here, we provide a comprehensive view of the TAL1-induced transcriptional program in human T-ALL cells using a rapid protein degradation system coupled with integrative approaches. Our study demonstrates that TAL1 targets can be classified into several groups, each of which exhibits unique gene expression kinetics, chromatin features, and regulatory mechanisms. Group A genes are highly dependent on TAL1, many of which are not expressed in normal T-cells or TAL1-negative T-ALL cells, representing an oncogenic TAL1 signature. The TAL1 complex predominantly activates Group A genes. TAL1's effect is not replaceable with its regulatory partners GATA3 or RUNX1. In contrast, Group B genes, many of which are generally expressed across different T-ALL subgroups, exhibit densely-connected chromatinchromatin interactions and demonstrate the collaborative roles played by TAL1 with other transcription factors. Interestingly, TAL1 cooperates with NOTCH1 to regulate gene expression in TAL1-positive T-ALL cells, whereas it potentially antagonizes the NOTCH1-MYC pathway and leads to lethality in TAL1-negative/TLX3-positive cells, demonstrating the context-dependent roles of TAL1.

3.
Haematologica ; 108(2): 367-381, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36073513

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of thymic T-cell precursors. Overexpression of oncogenic transcription factor TAL1 is observed in 40-60% of human T-ALL cases, frequently together with activation of the NOTCH1 and PI3K-AKT pathways. In this study, we performed chemical screening to identify small molecules that can inhibit the enhancer activity driven by TAL1 using the GIMAP enhancer reporter system. Among approximately 3,000 compounds, PIK- 75, a known inhibitor of PI3K and CDK, was found to strongly inhibit the enhancer activity. Mechanistic analysis demonstrated that PIK-75 blocks transcriptional activity, which primarily affects TAL1 target genes as well as AKT activity. TAL1-positive, AKT-activated T-ALL cells were very sensitive to PIK-75, as evidenced by growth inhibition and apoptosis induction, while T-ALL cells that exhibited activation of the JAK-STAT pathway were insensitive to this drug. Together, our study demonstrates a strategy targeting two types of core machineries mediated by oncogenic transcription factors and signaling pathways in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Janus Kinases/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , Transcription Factors/genetics , T-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
4.
Blood ; 135(12): 934-947, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31972002

ABSTRACT

Adult T-cell leukemia/lymphoma (ATL) is a highly aggressive hematological malignancy derived from mature CD4+ T-lymphocytes. Here, we demonstrate the transcriptional regulatory network driven by 2 oncogenic transcription factors, IRF4 and NF-κB, in ATL cells. Gene expression profiling of primary ATL samples demonstrated that the IRF4 gene was more highly expressed in ATL cells than in normal T cells. Chromatin immunoprecipitation sequencing analysis revealed that IRF4-bound regions were more frequently found in super-enhancers than in typical enhancers. NF-κB was found to co-occupy IRF4-bound regulatory elements and formed a coherent feed-forward loop to coordinately regulate genes involved in T-cell functions and development. Importantly, IRF4 and NF-κB regulated several cancer genes associated with super-enhancers in ATL cells, including MYC, CCR4, and BIRC3. Genetic inhibition of BIRC3 induced growth inhibition in ATL cells, implicating its role as a critical effector molecule downstream of the IRF4-NF-κB transcriptional network.


Subject(s)
Interferon Regulatory Factors/metabolism , Leukemia-Lymphoma, Adult T-Cell/etiology , Leukemia-Lymphoma, Adult T-Cell/metabolism , NF-kappa B/metabolism , Signal Transduction , Apoptosis/genetics , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Computational Biology , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Models, Biological , RNA, Small Interfering/genetics , Receptors, CCR4/metabolism
5.
Blood ; 134(3): 239-251, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31076442

ABSTRACT

The oncogenic transcription factor TAL1 regulates the transcriptional program in T-ALL. ARID5B is one of the critical downstream targets of TAL1, which further activates the oncogenic regulatory circuit in T-ALL cells. Here, we elucidated the molecular functions of the noncoding RNA, ARID5B-inducing enhancer associated long noncoding RNA (ARIEL), in T-ALL pathogenesis. We demonstrated that ARIEL is specifically activated in TAL1 + T-ALL cases, and its expression is associated with ARID5B enhancer activity. ARIEL recruits mediator proteins to the ARID5B enhancer, promotes enhancer-promoter interactions, and activates the expression of ARID5B, thereby positively regulating the TAL1-induced transcriptional program and the MYC oncogene. The TAL1 complex coordinately regulates the expression of ARIEL Knockdown of ARIEL inhibits cell growth and survival of T-ALL cells in culture and blocks disease progression in a murine xenograft model. Our results indicate that ARIEL plays an oncogenic role as an enhancer RNA in T-ALL.


Subject(s)
Carcinogenesis/genetics , Gene Expression Regulation, Leukemic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Long Noncoding/genetics , Transcription, Genetic , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation , Cell Survival/genetics , Chromatin Immunoprecipitation Sequencing , DNA-Binding Proteins/metabolism , Disease Models, Animal , Disease Progression , Enhancer Elements, Genetic , Gene Knockdown Techniques , Gene Targeting , Heterografts , Humans , Mice , Models, Biological , Multiprotein Complexes , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Promoter Regions, Genetic , Protein Binding , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , Transcription Factors/metabolism
6.
J Biol Chem ; 289(48): 33425-41, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25305013

ABSTRACT

Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Ferritins/metabolism , Lysosomes/metabolism , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Proteolysis/drug effects , Artesunate , Cell Death/drug effects , HeLa Cells , Hep G2 Cells , Humans , Iron/metabolism , Neoplasms/metabolism , Neoplasms/physiopathology , Nuclear Receptor Coactivators/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
7.
Blood Adv ; 8(7): 1651-1666, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38315834

ABSTRACT

ABSTRACT: Stress erythropoiesis can be influenced by multiple mediators through both intrinsic and extrinsic mechanisms in early erythroid precursors. Single-cell RNA sequencing was conducted on spleen tissue isolated from mice subjected to phenylhydrazine and serial bleeding to explore novel molecular mechanisms of stress erythropoiesis. Our results showed prominent emergence of early erythroblast populations under both modes of anemic stress. Analysis of gene expression revealed distinct phases during the development of emerging erythroid cells. Interestingly, we observed the presence of a "hiatus" subpopulation characterized by relatively low level of transcriptional activities that transitions between early stages of emerging erythroid cells, with moderate protein synthesis activities. Moreover, single-cell analysis conducted on macrophage populations revealed distinct transcriptional programs in Vcam1+ macrophages under stress. Notably, a novel marker, CD81, was identified for labeling central macrophages in erythroblastic islands (EBIs), which is functionally required for EBIs to combat anemic stress. These findings offer fresh insights into the intrinsic and extrinsic pathways of early erythroblasts' response to stress, potentially informing the development of innovative therapeutic approaches for addressing anemic-related conditions.


Subject(s)
Anemia , Spleen , Mice , Animals , Spleen/metabolism , Erythroblasts/metabolism , Anemia/etiology , Anemia/metabolism , Erythropoiesis/physiology , Macrophages/metabolism
8.
J Biol Chem ; 287(18): 14364-76, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22408252

ABSTRACT

Lipotoxicity refers to the cytotoxic effects of excess fat accumulation in cells and has been implicated as one of the contributing factors to diseases like obesity, diabetes, and non-alcoholic fatty liver. In this study we sought to examine effects of palmitic acid (PA) and oleic acid, two of the common dietary fatty acids on the autophagic process. We found that PA, but not oleic acid, was able to cause an increase in autophagic flux, evidenced by LC3-II accumulation and formation of GFP-LC3 puncta. Notably, PA-induced autophagy was found to be independent of mTOR regulation. Next, in search of the mechanism mediating PA-induced autophagy, we found increased levels of diacylglycerol species and protein kinase C (PKC) activation in PA-treated cells. More importantly, inhibition of classical PKC isoforms (PKC-α) was able to effectively suppress PA-induced autophagy. Finally, we showed that inhibition of autophagy sensitized the cells to PA-induced apoptosis, suggesting the pro-survival function of autophagy induced by PA. Taken together, results from this study reveal a novel mechanism underlying free fatty acid-mediated autophagy. Furthermore, the pro-survival function of autophagy suggests modulation of autophagy as a potential therapeutic strategy in protection of cells against lipotoxicity and lipid-related metabolic diseases.


Subject(s)
Autophagy/drug effects , Enzyme Inhibitors/pharmacology , Palmitic Acid/pharmacology , Protein Kinase C-alpha/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/genetics , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Activation/drug effects , Enzyme Activation/genetics , Hep G2 Cells , Humans , Mice , Protein Kinase C-alpha/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics
9.
Leukemia ; 37(10): 1969-1981, 2023 10.
Article in English | MEDLINE | ID: mdl-37591943

ABSTRACT

A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , N-Myc Proto-Oncogene Protein/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Mevalonic Acid , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Lymphocytes/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
10.
Cell Rep ; 42(12): 113541, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060444

ABSTRACT

Neuroblastoma originates from developing neural crest and can interconvert between the mesenchymal (MES) and adrenergic (ADRN) states, each of which are controlled by different sets of transcription factors forming the core regulatory circuit (CRC). However, the roles of CRC factors in induction and maintenance of specific state are poorly understood. Here, we demonstrate that overexpression of ASCL1, an ADRN CRC factor, in MES neuroblastoma cells opens closed chromatin at the promoters of key ADRN genes, accompanied by epigenetic activation and establishment of enhancer-promoter interactions, initiating the ADRN gene expression program. ASCL1 inhibits the transforming growth factor ß-SMAD2/3 pathway but activates the bone morphogenetic protein SMAD1-ID3/4 pathway. ASCL1 and other CRC members potentiate each other's activity, increasing the expression of the original targets and inducing a new set of genes, thereby fully inducing the ADRN program. Our results demonstrate that ASCL1 serves as a pioneer factor and cooperates with CRC factors to characterize the ADRN gene expression program.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Neuroblastoma , Humans , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Adrenergic Agents , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Neuroblastoma/genetics , Neuroblastoma/metabolism
11.
Blood Adv ; 6(18): 5330-5344, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35482445

ABSTRACT

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive hematologic malignancy with poor clinical outcomes. Dysregulated MYC expression, which is associated with protein arginine methyltransferase 5 (PRMT5) dependency, is a recurrent feature of BPDCN. Although recent studies have reported a PRMT5 gene signature in BPDCN patient samples, the role of PRMT5 in BPDCN remains unexplored. Here, we demonstrate that BPDCN is highly sensitive to PRMT5 inhibition. Consistent with the upregulation of PRMT5 in BPDCN, we show that pharmacological inhibition (GSK3326595) of PRMT5 inhibits the growth of the patient-derived BPDCN cell line CAL-1 in vitro and mitigated tumor progression in our mouse xenograft model. Interestingly, RNA-sequencing (RNA-seq) analysis revealed that PRMT5 inhibition increases intron retention in several key RNA methylation genes, including METTL3, which was accompanied by a dose-dependent decrease in METTL3 expression. Notably, the function of cellular m6A RNA modification of METTL3 was also affected by PRMT5 inhibition in CAL-1 cells. Intriguingly, METTL3 depletion in CAL-1 caused a significant increase in interferon (IFN) signaling, which was further elevated upon PRMT5 inhibition. Importantly, we discovered that this increase in IFN signaling attenuated the sensitivity of METTL3-depleted CAL-1 cells to PRMT5 inhibition. Correspondingly, stimulation of IFN signaling via TLR7 agonists weakened CAL-1 cell sensitivity to PRMT5 inhibition. Overall, our findings implicate PRMT5 as a therapeutic target in BPDCN and provide insight into the involvement of METTL3 and the IFN pathway in regulating the response to PRMT5 inhibition.


Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Skin Neoplasms , Animals , Dendritic Cells/metabolism , Hematologic Neoplasms/genetics , Humans , Interferons/metabolism , Methyltransferases/metabolism , Mice , Myeloproliferative Disorders/pathology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , RNA/metabolism , Skin Neoplasms/genetics , Toll-Like Receptor 7/metabolism
12.
J Exp Med ; 219(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36112140

ABSTRACT

Intercellular mitochondria transfer is a biological phenomenon implicated in diverse biological processes. However, the physiological role of this phenomenon remains understudied between erythroblasts and their erythroblastic island (EBI) macrophage niche. To gain further insights into the mitochondria transfer functions, we infused EBI macrophages in vivo into mice subjected to different modes of anemic stresses. Interestingly, we observed the occurrence of mitochondria transfer events from the infused EBI macrophages to early stages of erythroblasts coupled with enhanced erythroid recovery. Single-cell RNA-sequencing analysis on erythroblasts receiving exogenous mitochondria revealed a subset of highly proliferative and metabolically active erythroid populations marked by high expression of CD47. Furthermore, CD47 or Sirpα blockade leads to a decline in both the occurrence of mitochondria transfer events and their mediated erythroid recovery. Hence, these data indicate a significant role of mitochondria transfer in the enhancement of erythroid recovery from stress through the alteration of the bioenergetic profiles via CD47-Sirpα interaction in the early stages of erythroblasts.


Subject(s)
CD47 Antigen , Erythropoiesis , Mitochondria , Animals , CD47 Antigen/metabolism , Energy Metabolism , Erythroblasts/metabolism , Erythropoiesis/physiology , Mice , Mitochondria/metabolism , RNA/metabolism , Receptors, Erythropoietin/metabolism , Single-Cell Analysis , Stress, Physiological
13.
Blood Adv ; 4(13): 3154-3168, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32658986

ABSTRACT

Synthetic glucocorticoids (GCs), such as dexamethasone and prednisone, remain key components of therapy for patients with lymphoid malignancies. For pediatric patients with acute lymphoblastic leukemia (ALL), response to GCs remains the most reliable prognostic indicator; failure to respond to GC correlates with poor event-free survival. To uncover GC resistance mechanisms, we performed a genome-wide, survival-based short hairpin RNA screen and identified the orphan nuclear receptor estrogen-related receptor-ß (ESRRB) as a critical transcription factor that cooperates with the GC receptor (GR) to mediate the GC gene expression signature in mouse and human ALL cells. Esrrb knockdown interfered with the expression of genes that were induced and repressed by GR and resulted in GC resistance in vitro and in vivo. Dexamethasone treatment stimulated ESRRB binding to estrogen-related receptor elements (ERREs) in canonical GC-regulated genes, and H3K27Ac Hi-chromatin immunoprecipitation revealed increased interactions between GR- and ERRE-containing regulatory regions in dexamethasone-treated human T-ALL cells. Furthermore, ESRRB agonists enhanced GC target gene expression and synergized with dexamethasone to induce leukemic cell death, indicating that ESRRB agonists may overcome GC resistance in ALL, and potentially, in other lymphoid malignancies.


Subject(s)
Glucocorticoids , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Cell Line, Tumor , Child , Gene Expression , Glucocorticoids/pharmacology , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptors, Estrogen , Receptors, Glucocorticoid/genetics
15.
Cell Rep ; 26(9): 2316-2328.e6, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30811983

ABSTRACT

Protein arginine methyltransferase 5 (PRMT5) is essential for hematopoiesis, while PRMT5 inhibition remains a promising therapeutic strategy against various cancers. Here, we demonstrate that hematopoietic stem cell (HSC) quiescence and viability are severely perturbed upon PRMT5 depletion, which also increases HSC size, PI3K/AKT/mechanistic target of rapamycin (mTOR) pathway activity, and protein synthesis rate. We uncover a critical role for PRMT5 in maintaining HSC genomic integrity by modulating splicing of genes involved in DNA repair. We found that reducing PRMT5 activity upregulates exon skipping and intron retention events that impair gene expression. Genes across multiple DNA repair pathways are affected, several of which mediate interstrand crosslink repair and homologous recombination. Consequently, loss of PRMT5 activity leads to endogenous DNA damage that triggers p53 activation, induces apoptosis, and culminates in rapid HSC exhaustion, which is significantly delayed by p53 depletion. Collectively, these findings establish the importance of cell-intrinsic PRMT5 activity in HSCs.


Subject(s)
Hematopoietic Stem Cells/enzymology , Protein-Arginine N-Methyltransferases/physiology , Proteostasis , RNA Splicing , Animals , Apoptosis , Cell Line , DNA Damage , DNA Repair , Genome , Hematopoietic Stem Cells/metabolism , Mice , Protein Biosynthesis , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism
16.
Nat Commun ; 10(1): 5622, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819055

ABSTRACT

A heritable polymorphism within regulatory sequences of the LMO1 gene is associated with its elevated expression and increased susceptibility to develop neuroblastoma, but the oncogenic pathways downstream of the LMO1 transcriptional co-regulatory protein are unknown. Our ChIP-seq and RNA-seq analyses reveal that a key gene directly regulated by LMO1 and MYCN is ASCL1, which encodes a basic helix-loop-helix transcription factor. Regulatory elements controlling ASCL1 expression are bound by LMO1, MYCN and the transcription factors GATA3, HAND2, PHOX2B, TBX2 and ISL1-all members of the adrenergic (ADRN) neuroblastoma core regulatory circuitry (CRC). ASCL1 is required for neuroblastoma cell growth and arrest of differentiation. ASCL1 and LMO1 directly regulate the expression of CRC genes, indicating that ASCL1 is a member and LMO1 is a coregulator of the ADRN neuroblastoma CRC.


Subject(s)
Adrenergic Agents/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Gene Regulatory Networks , LIM Domain Proteins/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Transcription Factors/metabolism , Cell Differentiation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Neuroblastoma/genetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Survival Analysis
17.
Leukemia ; 32(10): 2138-2151, 2018 10.
Article in English | MEDLINE | ID: mdl-29654272

ABSTRACT

TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 and its regulatory partners (GATA3, RUNX1, and MYB) positively regulate each other and coordinately regulate the expression of their downstream target genes in T-ALL cells. However, long non-coding RNAs (lncRNAs) regulated by these factors are largely unknown. Here we established a bioinformatics pipeline and analyzed RNA-seq datasets with deep coverage to identify lncRNAs regulated by TAL1 in T-ALL cells. Our analysis predicted 57 putative lncRNAs that are activated by TAL1. Many of these transcripts were regulated by GATA3, RUNX1, and MYB in a coordinated manner. We identified two novel transcripts that were activated in multiple T-ALL cell samples but were downregulated in normal thymocytes. One transcript near the ARID5B gene locus was specifically expressed in TAL1-positive T-ALL cases. The other transcript located between the FAM49A and MYCN gene locus was also expressed in normal hematopoietic stem cells and T-cell progenitor cells. In addition, we identified a subset of lncRNAs that were negatively regulated by TAL1 and positively regulated by E-proteins in T-ALL cells. This included a known lncRNA (lnc-OAZ3-2:7) located near the RORC gene, which was expressed in normal thymocytes but repressed in TAL1-positive T-ALL cells.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA, Long Noncoding/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Animals , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , GATA3 Transcription Factor/genetics , Gene Expression Regulation, Leukemic/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , N-Myc Proto-Oncogene Protein/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Thymocytes/physiology
18.
Front Oncol ; 7: 218, 2017.
Article in English | MEDLINE | ID: mdl-29034206

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy characterized by the clonal proliferation of immature T-cell precursors. T-ALL has many similar pathophysiological features to acute myeloid leukemia, which has been extensively studied in the establishment of the cancer stem cell (CSC) theory, but the CSC concept in T-ALL is still debatable. Although leukemia-initiating cells (LICs), which can generate leukemia in a xenograft setting, have been found in both human T-ALL patients and animal models, the nature and origin of LICs are largely unknown. In this review, we discuss recent studies on LICs in T-ALL and the potential mechanisms of LIC emergence in this disease. We focus on the oncogenic transcription factors TAL1, LMO2, and NOTCH1 and highlight the significance of the transcriptional regulatory programs in normal hematopoietic stem cells and T-ALL.

19.
Gene ; 571(2): 194-204, 2015 Oct 25.
Article in English | MEDLINE | ID: mdl-26095807

ABSTRACT

MiRNAs have recently been implicated in the regulation of autophagy. The present study focuses on how miRNA expression profiling is linked to the regulation of starvation-induced autophagy. Atg5 wild-type (WT) and knockout (KO) mouse embryonic fibroblasts (MEFs) were starved in Earle's balanced salt solution (EBSS) for 3h, and miRNA microarray was then performed to compare the miRNA expression profiles. Our results showed that: (1) one hundred miRNAs were significantly altered in both Atg5 WT and KO MEFs during starvation-induced autophagy; (2) among those miRNAs with significant changes upon starvation, 60 of them were upregulated in both Atg5 WT and KO MEFs and only 24 miRNAs were upregulated exclusively in Atg5 KO MEFs; (3) qRT-PCR validation analysis of 8 selected miRNAs showed a high correlation coefficient (r=0.95456) with microarray results; (4) many significantly altered miRNAs were mapped to several key signaling pathways and autophagy-related genes (Atgs) involved in the autophagy process, including (i) the Beclin1-Class III phosphatidylinositol 3-kinase (PI3KC3) complex, (ii) the ULK1 complex, (iii) the RAG/mechanistic target of rapamycin (mTOR) pathway, (iv) the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK)-mTOR, and the class I phosphatidylinositol 3-kinase (PI3KC1)-Akt-mTOR pathways. The systematical analysis of the miRNA expression profiling and preliminary network analysis reveal that most of these miRNAs play important roles in autophagy regulation. Our results clearly demonstrate that miRNAs are involved in the autophagy process and understanding the functions of miRNAs provides novel insights into the molecular mechanisms underlying starvation-induced autophagy.


Subject(s)
Autophagy/genetics , Embryo, Mammalian/cytology , Fibroblasts/physiology , MicroRNAs/genetics , Animals , Cells, Cultured , Embryo, Mammalian/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Mice , MicroRNAs/analysis , Microarray Analysis , Systems Integration
20.
Autophagy ; 11(4): 629-42, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25919885

ABSTRACT

Autophagy is a catabolic process in response to starvation or other stress conditions to sustain cellular homeostasis. At present, histone deacetylase inhibitors (HDACIs) are known to induce autophagy in cells through inhibition of mechanistic target of rapamycin (MTOR) pathway. FOXO1, an important transcription factor regulated by AKT, is also known to play a role in autophagy induction. At present, the role of FOXO1 in the HDACIs-induced autophagy has not been reported. In this study, we first observed that HDACIs increased the expression of FOXO1 at the mRNA and protein level. Second, we found that FOXO1 transcriptional activity was enhanced by HDACIs, as evidenced by increased FOXO1 nuclear accumulation and transcriptional activity. Third, suppression of FOXO1 function by siRNA knockdown or by a chemical inhibitor markedly blocked HDACIs-induced autophagy. Moreover, we found that FOXO1-mediated autophagy is achieved via its transcriptional activation, leading to a dual effect on autophagy induction: (i) enhanced expression of autophagy-related (ATG) genes, and (ii) suppression of MTOR via transcription of the SESN3 (sestrin 3) gene. Finally, we found that inhibition of autophagy markedly enhanced HDACIs-mediated cell death, indicating that autophagy serves as an important cell survival mechanism. Taken together, our studies reveal a novel function of FOXO1 in HDACIs-mediated autophagy in human cancer cells and thus support the development of a novel therapeutic strategy by combining HDACIs and autophagy inhibitors in cancer therapy.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Forkhead Transcription Factors/metabolism , Histone Deacetylase Inhibitors/metabolism , Apoptosis/genetics , Cell Survival/physiology , Forkhead Box Protein O1 , Humans , Signal Transduction/physiology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL