Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036767

ABSTRACT

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Subject(s)
Adaptive Immunity , BCG Vaccine , Animals , Mice , Humans , Feedback , Vaccination , Weight Loss , Antiviral Agents , Immunity, Innate
2.
Res Sq ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39257970

ABSTRACT

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

3.
bioRxiv ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38260654

ABSTRACT

A multitude of tools now exist that allow us to precisely manipulate the human genome in a myriad of different ways. However, successful delivery of these tools to the cells of human patients remains a major barrier to their clinical implementation. Here we introduce a new cellular approach for in vivo genetic engineering, Secreted Particle Information Transfer (SPIT) that utilizes human cells as delivery vectors for in vivo genetic engineering. We demonstrate the application of SPIT for cell-cell delivery of Cre recombinase and CRISPR-Cas9 enzymes, we show that genetic logic can be incorporated into SPIT and present the first demonstration of human cells as a delivery platform for in vivo genetic engineering in immunocompetent mice. We successfully applied SPIT to genetically modify multiple organs and tissue stem cells in vivo including the liver, spleen, intestines, peripheral blood, and bone marrow. We anticipate that by harnessing the large packaging capacity of a human cell's nucleus, the ability of human cells to engraft into patients' long term and the capacity of human cells for complex genetic programming, that SPIT will become a paradigm shifting approach for in vivo genetic engineering.

4.
Cell Syst ; 15(4): 322-338.e5, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38636457

ABSTRACT

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/pathology , T-Lymphocytes , Phenotype
5.
Blood Adv ; 7(14): 3366-3377, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36809781

ABSTRACT

Hematopoietic stem cells (HSCs) are a rare type of hematopoietic cell that can entirely reconstitute the blood and immune system after transplantation. Allogeneic HSC transplantation (HSCT) is used clinically as a curative therapy for a range of hematolymphoid diseases; however, it remains a high-risk therapy because of its potential side effects, including poor graft function and graft-versus-host disease (GVHD). Ex vivo HSC expansion has been suggested as an approach to improve hematopoietic reconstitution in low-cell dose grafts. Here, we demonstrate that the selectivity of polyvinyl alcohol (PVA)-based mouse HSC cultures can be improved using physioxic culture conditions. Single-cell transcriptomic analysis helped confirm the inhibition of lineage-committed progenitor cells in physioxic cultures. Long-term physioxic expansion also afforded culture-based ex vivo HSC selection from whole bone marrow, spleen, and embryonic tissues. Furthermore, we provide evidence that HSC-selective ex vivo cultures deplete GVHD-causing T cells and that this approach can be combined with genotoxic-free antibody-based conditioning HSCT approaches. Our results offer a simple approach to improve PVA-based HSC cultures and the underlying molecular phenotype, and highlight the potential translational implications of selective HSC expansion systems for allogeneic HSCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Transplantation, Homologous , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/metabolism
6.
Adv Healthc Mater ; 11(24): e2201138, 2022 12.
Article in English | MEDLINE | ID: mdl-36314397

ABSTRACT

Combining the sustainable culture of billions of human cells and the bioprinting of wholly cellular bioinks offers a pathway toward organ-scale tissue engineering. Traditional 2D culture methods are not inherently scalable due to cost, space, and handling constraints. Here, the suspension culture of human induced pluripotent stem cell-derived aggregates (hAs) is optimized using an automated 250 mL stirred tank bioreactor system. Cell yield, aggregate morphology, and pluripotency marker expression are maintained over three serial passages in two distinct cell lines. Furthermore, it is demonstrated that the same optimized parameters can be scaled to an automated 1 L stirred tank bioreactor system. This 4-day culture results in a 16.6- to 20.4-fold expansion of cells, generating approximately 4 billion cells per vessel, while maintaining >94% expression of pluripotency markers. The pluripotent aggregates can be subsequently differentiated into derivatives of the three germ layers, including cardiac aggregates, and vascular, cortical and intestinal organoids. Finally, the aggregates are compacted into a wholly cellular bioink for rheological characterization and 3D bioprinting. The printed hAs are subsequently differentiated into neuronal and vascular tissue. This work demonstrates an optimized suspension culture-to-3D bioprinting pipeline that enables a sustainable approach to billion cell-scale organ engineering.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Cell Culture Techniques , Cell Proliferation , Cell Line , Bioreactors
7.
Stem Cells Transl Med ; 3(5): 586-98, 2014 May.
Article in English | MEDLINE | ID: mdl-24646489

ABSTRACT

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a "do-it-yourself" basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide.


Subject(s)
Biological Specimen Banks , Induced Pluripotent Stem Cells/cytology , Specimen Handling/methods , Female , Fingers , Humans , Male , Regenerative Medicine/methods
SELECTION OF CITATIONS
SEARCH DETAIL