Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Rep ; 42(3): 112267, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36924492

ABSTRACT

Sleep is regulated by peripheral tissues under fatigue. The molecular pathways in peripheral cells that trigger systemic sleep-related signals, however, are unclear. Here, a forward genetic screen in C. elegans identifies 3 genes that strongly affect sleep amount: sel-1, sel-11, and mars-1. sel-1 and sel-11 encode endoplasmic reticulum (ER)-associated degradation components, whereas mars-1 encodes methionyl-tRNA synthetase. We find that these machineries function in non-neuronal tissues and that the ER unfolded protein response components inositol-requiring enzyme 1 (IRE1)/XBP1 and protein kinase R-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α)/activating transcription factor-4 (ATF4) participate in non-neuronal sleep regulation, partly by reducing global translation. Neuronal epidermal growth factor receptor (EGFR) signaling is also required. Mouse studies suggest that this mechanism is conserved in mammals. Considering that prolonged wakefulness increases ER proteostasis stress in peripheral tissues, our results suggest that peripheral ER proteostasis factors control sleep homeostasis. Moreover, based on our results, peripheral tissues likely cope with ER stress not only by the well-established cell-autonomous mechanisms but also by promoting the individual's sleep.


Subject(s)
Caenorhabditis elegans , Proteostasis , Animals , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Unfolded Protein Response , Endoplasmic Reticulum Stress/physiology , Signal Transduction , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Mammals/metabolism
2.
Mol Brain ; 14(1): 170, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34794460

ABSTRACT

Despite the established roles of the dopaminergic system in promoting arousal, the effects of loss of dopamine on the patterns of sleep and wakefulness remain elusive. Here, we examined the sleep architecture of dopamine-deficient (DD) mice, which were previously developed by global knockout of tyrosine hydroxylase and its specific rescue in noradrenergic and adrenergic neurons. We found that DD mice have reduced time spent in wakefulness. Unexpectedly, DD mice also exhibited a marked reduction in the time spent in rapid eye movement (REM) sleep. The electroencephalogram power spectrum of all vigilance states in DD mice were also affected. These results support the current understanding of the critical roles of the dopaminergic system in maintaining wakefulness and also implicate its previously unknown effects on REM sleep.


Subject(s)
Sleep, REM , Wakefulness , Animals , Dopamine , Electroencephalography , Mice , Sleep/physiology , Sleep, REM/physiology , Wakefulness/physiology
3.
Curr Biol ; 30(6): 1002-1010.e4, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32032507

ABSTRACT

Classical transection studies suggest that, in addition to the hypothalamus, the brainstem is essential for non-rapid eye movement (NREM) sleep. The circuits underlying this function, however, have remained largely unknown. We identified a circuit distributed in the midbrain, pons, and medulla that promotes NREM sleep in mice. We focused on the sublaterodorsal tegmentum, an area implicated in dual regulation of REM and NREM sleep. Transcriptomic and genetic analyses revealed that neurons positive for the neuropeptide neurotensin promote NREM sleep. Further analyses identified downstream NREM sleep-promoting neurons in the dorsal deep mesencephalic nucleus, the lateral part of the periaqueductal gray, and the medial vestibular nucleus that were also neurotensinergic. Infusion of neurotensin into the fourth ventricle induced NREM sleep-like cortical activity, whereas mice deficient for neurotensin exhibited increased REM sleep, implicating the involvement of the neuropeptide itself. These findings identify a widely distributed NREM sleep-regulating circuit in the brainstem with a common molecular property.


Subject(s)
Brain Stem/physiology , Neurons/physiology , Sleep, Slow-Wave/physiology , Animals , Female , Male , Mice , Neurotensin/metabolism
4.
Genetics ; 216(3): 753-764, 2020 11.
Article in English | MEDLINE | ID: mdl-32878901

ABSTRACT

The molecular mechanism regulating sleep largely remains to be elucidated. In humans, families that carry mutations in TFAP2B, which encodes the transcription factor AP-2ß, self-reported sleep abnormalities such as short-sleep and parasomnia. Notably, AP-2 transcription factors play essential roles in sleep regulation in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster Thus, AP-2 transcription factors might have a conserved role in sleep regulation across the animal phyla. However, direct evidence supporting the involvement of TFAP2B in mammalian sleep was lacking. In this study, by using the CRISPR/Cas9 technology, we generated two Tfap2b mutant mouse strains, Tfap2bK144 and Tfap2bK145 , each harboring a single-nucleotide mutation within the introns of Tfap2b mimicking the mutations in two human kindreds that self-reported sleep abnormalities. The effects of these mutations were compared with those of a Tfap2b knockout allele (Tfap2b-). The protein expression level of TFAP2B in the embryonic brain was reduced to about half in Tfap2b+/- mice and was further reduced in Tfap2b-/- mice. By contrast, the protein expression level was normal in Tfap2bK145/+ mice but was reduced in Tfap2bK145/K145 mice to a similar extent as Tfap2b-/- mice. Tfap2bK144/+ and Tfap2bK144/K144 showed normal protein expression levels. Tfap2b+/- female mice showed increased wakefulness time and decreased nonrapid eye movement sleep (NREMS) time. By contrast, Tfap2bK145/+ female mice showed an apparently normal amount of sleep but instead exhibited fragmented NREMS, whereas Tfap2bK144/+ male mice showed reduced NREMS time specifically in the dark phase. Finally, in the adult brain, Tfap2b-LacZ expression was detected in the superior colliculus, locus coeruleus, cerebellum, and the nucleus of solitary tract. These findings provide direct evidence that TFAP2B influences NREMS amounts in mice and also show that different mutations in Tfap2b can lead to diverse effects on sleep architecture.


Subject(s)
Sleep Stages , Transcription Factor AP-2/genetics , Animals , Brain/embryology , Brain/metabolism , Female , Introns , Male , Mice , Point Mutation , Transcription Factor AP-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL