ABSTRACT
Dye-containing polymers P1 (PEDPP-OT-BDT) and P2 (PEDPP-OT-BDTT) including a π-extended diketopyropyrrole (DPP) derivative and electron-rich thiophene fused ring units (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene for P1 and 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene for P2) were synthesized as narrow band gap dyes. A π-extended DPP (EDPP-OT-BrPh), fragment of the polymers P1 and P2, was obtained by extending the π-conjugation of DPP using Ru(III)-catalyzed C-H and N-H activation reported by Gonka etâ al. in 2019, exhibiting a high quantum yield (Ïem=0.84) and small HOMO-LUMO gap (Eg=1.69â eV) due to the spatial overlap of the HOMO and LUMO orbitals. The solubility of the π-extended DPP was improved by introducing four 2-octylthophene side chains around the periphery of the planer dye moiety, while maintaining the high planarity of the dye molecule, which is essential to the function of optoelectronic devices. As a result, P1 and P2, polymerized with the π-extended DPP and BDT derivatives, exhibit carrier mobility of approximately 10-5â cm2/Vs in organic field-effect transistors (OFETs). In bulk heterojunction (BHJ) solar cells with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), they demonstrate a power conversion efficiency (PCE) of 1.0 % with an average transmittance (AVTs) of around 60 %.
ABSTRACT
A coordination polymer, [Cu(SCN)(iqi)]n (iqi = isoquinoline), containing copper(I) thiocyanate and a nitrogen-containing π-conjugated ligand, iqi, has been synthesized and its physical properties were evaluated. This coordination polymer has a two-dimensional (2D) sheet structure consisting of copper(I) thiocyanate and shows photoluminescence derived from 3MLCT and photoconductive properties.
ABSTRACT
For the search of new metal-halide perovskite solar cell materials, tolerance factors are calculated from the ionic radius of each site and are often utilized as the critical factors to expect the materials forming perovskite structure. As one of such amine hydrohalides, guanidine hydroiodide (GI) is reported not to react with PbI2. However, in this paper, we report the product of GI and SnI2 reaction, its visible light absorption, X-ray diffraction, and its solar cell operation, in spite of the more disadvantageous tolerance factor of SnI2 than PbI2. We also report the thermal stability of GI, enabling precise control of vacuum deposition, and utilization of co-evaporant induced crystallization method during the vacuum evaporation of the SnI2 film, which resulted in enlarging the SnI2 crystals and improving the short circuit current density of the solar cell.