Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Biochem ; 81: 715-36, 2012.
Article in English | MEDLINE | ID: mdl-22463691

ABSTRACT

Excessive caloric intake without a rise in energy expenditure promotes adipocyte hyperplasia and adiposity. The rise in adipocyte number is triggered by signaling factors that induce conversion of mesenchymal stem cells (MSCs) to preadipocytes that differentiate into adipocytes. MSCs, which are recruited from the vascular stroma of adipose tissue, provide an unlimited supply of adipocyte precursors. Members of the BMP and Wnt families are key mediators of stem cell commitment to produce preadipocytes. Following commitment, exposure of growth-arrested preadipocytes to differentiation inducers [insulin-like growth factor 1 (IGF1), glucocorticoid, and cyclic AMP (cAMP)] triggers DNA replication and reentry into the cell cycle (mitotic clonal expansion). Mitotic clonal expansion involves a transcription factor cascade, followed by the expression of adipocyte genes. Critical to these events are phosphorylations of the transcription factor CCATT enhancer-binding protein ß (C/EBPß) by MAP kinase and GSK3ß to produce a conformational change that gives rise to DNA-binding activity. "Activated" C/EBPß then triggers transcription of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which in turn coordinately activate genes whose expression produces the adipocyte phenotype.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Adipogenesis , Animals , Humans , Signal Transduction , Stem Cells/metabolism , Transcription Factors/metabolism
2.
Proc Natl Acad Sci U S A ; 120(33): e2305717120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549287

ABSTRACT

Great progress has been made in identifying positive regulators that activate adipocyte thermogenesis, but negative regulatory signaling of thermogenesis remains poorly understood. Here, we found that cardiotrophin-like cytokine factor 1 (CLCF1) signaling led to loss of brown fat identity, which impaired thermogenic capacity. CLCF1 levels decreased during thermogenic stimulation but were considerably increased in obesity. Adipocyte-specific CLCF1 transgenic (CLCF1-ATG) mice showed impaired energy expenditure and severe cold intolerance. Elevated CLCF1 triggered whitening of brown adipose tissue by suppressing mitochondrial biogenesis. Mechanistically, CLCF1 bound and activated ciliary neurotrophic factor receptor (CNTFR) and augmented signal transducer and activator of transcription 3 (STAT3) signaling. STAT3 transcriptionally inhibited both peroxisome proliferator-activated receptor-γ coactivator (PGC) 1α and 1ß, which thereafter restrained mitochondrial biogenesis in adipocytes. Inhibition of CNTFR or STAT3 could diminish the inhibitory effects of CLCF1 on mitochondrial biogenesis and thermogenesis. As a result, CLCF1-TG mice were predisposed to develop metabolic dysfunction even without external metabolic stress. Our findings revealed a brake signal on nonshivering thermogenesis and suggested that targeting this pathway could be used to restore brown fat activity and systemic metabolic homeostasis in obesity.


Subject(s)
Adipocytes, Brown , Organelle Biogenesis , Animals , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Homeostasis , Obesity/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Thermogenesis/physiology
3.
EMBO J ; 40(24): e108069, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34704268

ABSTRACT

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine-fed mice showed better cold tolerance. In mice with diet-induced obesity, the asparagine-fed group was more responsive to ß3-adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13 C-glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.


Subject(s)
Asparagine/pharmacology , Glycolysis/drug effects , Signal Transduction/drug effects , Thermogenesis/drug effects , Animals , Cells, Cultured , Cold Temperature , Gene Expression Regulation/drug effects , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Metabolomics , Mice
4.
J Biol Chem ; 298(2): 101544, 2022 02.
Article in English | MEDLINE | ID: mdl-34971706

ABSTRACT

Uncontrolled gluconeogenesis results in elevated hepatic glucose production in type 2 diabetes (T2D). The small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is known to catalyze deSUMOylation of target proteins, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic gluconeogenesis and the occurrence of T2D remain unknown. Herein, we established SENP2 hepatic knockout mice and found that SENP2 deficiency could protect against high-fat diet-induced hyperglycemia. Pyruvate- or glucagon-induced elevation in blood glucose was attenuated by disruption of SENP2 expression, whereas overexpression of SENP2 in the liver facilitated high-fat diet-induced hyperglycemia. Using an in vitro assay, we showed that SENP2 regulated hepatic glucose production. Mechanistically, the effects of SENP2 on gluconeogenesis were found to be mediated by the cellular fuel sensor kinase, 5'-AMP-activated protein kinase alpha (AMPKα), which is a negative regulator of gluconeogenesis. SENP2 interacted with and deSUMOylated AMPKα, thereby promoting its ubiquitination and reducing its protein stability. Inhibition of AMPKα kinase activity dramatically reversed impaired hepatic gluconeogenesis and reduced blood glucose levels in SENP2-deficient mice. Our study highlights the novel role of hepatic SENP2 in regulating gluconeogenesis and furthers our understanding of the pathogenesis of T2D.


Subject(s)
AMP-Activated Protein Kinases , Cysteine Endopeptidases , Diabetes Mellitus, Type 2 , Hyperglycemia , Sumoylation , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Blood Glucose/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gluconeogenesis , Glucose/metabolism , Hyperglycemia/metabolism , Liver/metabolism , Mice , Peptide Hydrolases/metabolism
5.
Proc Natl Acad Sci U S A ; 117(36): 22413-22422, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839323

ABSTRACT

Brown and beige adipocytes harbor the thermogenic capacity to adapt to environmental thermal or nutritional changes. Histone methylation is an essential epigenetic modification involved in the modulation of nonshivering thermogenesis in adipocytes. Here, we describe a molecular network leading by KMT5c, a H4K20 methyltransferase, that regulates adipocyte thermogenesis and systemic energy expenditure. The expression of Kmt5c is dramatically induced by a ß3-adrenergic signaling cascade in both brown and beige fat cells. Depleting Kmt5c in adipocytes in vivo leads to a decreased expression of thermogenic genes in both brown and subcutaneous (s.c.) fat tissues. These mice are prone to high-fat-diet-induced obesity and develop glucose intolerance. Enhanced transformation related protein 53 (Trp53) expression in Kmt5c knockout (KO) mice, that is due to the decreased repressive mark H4K20me3 on its proximal promoter, is responsible for the metabolic phenotypes. Together, these findings reveal the physiological role for KMT5c-mediated H4K20 methylation in the maintenance and activation of the thermogenic program in adipocytes.


Subject(s)
Adipocytes, Beige/physiology , Adipocytes, Brown/physiology , Histone-Lysine N-Methyltransferase , Thermogenesis/physiology , Tumor Suppressor Protein p53/metabolism , Adipocytes, Beige/metabolism , Adipocytes, Brown/metabolism , Animals , Diet, High-Fat , Female , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Male , Mice , Mice, Knockout , Tumor Suppressor Protein p53/genetics
6.
J Biol Chem ; 296: 100678, 2021.
Article in English | MEDLINE | ID: mdl-33872596

ABSTRACT

Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.


Subject(s)
Adipose Tissue/metabolism , Bone Morphogenetic Proteins/metabolism , Signal Transduction , Adipocytes/cytology , Adipocytes/metabolism , Animals , Cell Death , Cell Differentiation , Cellular Senescence , Humans , Macrophages/cytology , Transcription, Genetic
7.
Hepatology ; 74(4): 1864-1883, 2021 10.
Article in English | MEDLINE | ID: mdl-33934381

ABSTRACT

BACKGROUND AND AIMS: NAFLD, characterized by aberrant triglyceride accumulation in liver, affects the metabolic remodeling of hepatic and nonhepatic tissues by secreting altered hepatokines. Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is responsible for de-SUMOylation of target protein, with broad effects on cell growth, signal transduction, and developmental processes. However, the role of SENP2 in hepatic metabolism remains unclear. APPROACH AND RESULTS: We found that SENP2 was the most dramatically increased SENP in the fatty liver and that its level was modulated by fed/fasted conditions. To define the role of hepatic SENP2 in metabolic regulation, we generated liver-specific SENP2 knockout (Senp2-LKO) mice. Senp2-LKO mice exhibited resistance to high-fat diet-induced hepatic steatosis and obesity. RNA-sequencing analysis showed that Senp2 deficiency up-regulated genes involved in fatty acid oxidation and down-regulated genes in lipogenesis in the liver. Additionally, ablation of hepatic SENP2 activated thermogenesis of adipose tissues. Improved energy homeostasis of both the liver and adipose tissues by SENP2 disruption prompted us to detect the hepatokines, with FGF21 identified as a key factor markedly elevated in Senp2-LKO mice that maintained metabolic homeostasis. Loss of FGF21 obviously reversed the positive effects of SENP2 deficiency on metabolism. Mechanistically, by screening transcriptional factors of FGF21, peroxisome proliferator-activated receptor alpha (PPARα) was defined as the mediator for SENP2 and FGF21. SENP2 interacted with PPARα and deSUMOylated it, thereby promoting ubiquitylation and subsequent degradation of PPARα, which in turn inhibited FGF21 expression and fatty acid oxidation. Consistently, SENP2 overexpression in liver facilitated development of metabolic disorders. CONCLUSIONS: Our finding demonstrated a key role of hepatic SENP2 in governing metabolic balance by regulating liver-adipose tissue crosstalk, linking the SUMOylation process to metabolic regulation.


Subject(s)
Adipose Tissue/metabolism , Cysteine Endopeptidases/genetics , Fibroblast Growth Factors/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/genetics , PPAR alpha/metabolism , Animals , Cysteine Endopeptidases/metabolism , Diet, High-Fat , Energy Metabolism/genetics , Fatty Acids/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Humans , Lipogenesis/genetics , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/genetics , Obesity/metabolism , Sumoylation , Thermogenesis/genetics , Ubiquitination
8.
Genome Res ; 28(2): 192-202, 2018 02.
Article in English | MEDLINE | ID: mdl-29273625

ABSTRACT

Eukaryotic chromosomes are folded into higher-order conformations to coordinate genome functions. In addition to long-range chromatin loops, recent chromosome conformation capture (3C)-based studies have indicated higher levels of chromatin structures including compartments and topologically associating domains (TADs), which may serve as units of genome organization and functions. However, the molecular machinery underlying these hierarchically three-dimensional (3D) chromatin architectures remains poorly understood. Via high-throughput assays, including in situ Hi-C, DamID, ChIP-seq, and RNA-seq, we investigated roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, in 3D genome organization. Upon the depletion of HNRNPU in mouse hepatocytes, the coverage of lamina-associated domains (LADs) in the genome increases from 53.1% to 68.6%, and a global condensation of chromatin was observed. Furthermore, disruption of HNRNPU leads to compartment switching on 7.5% of the genome, decreases TAD boundary strengths at borders between A (active) and B (inactive) compartments, and reduces chromatin loop intensities. Long-range chromatin interactions between and within compartments or TADs are also significantly remodeled upon HNRNPU depletion. Intriguingly, HNRNPU mainly associates with active chromatin, and 80% of HNRNPU peaks coincide with the binding of CTCF or RAD21. Collectively, we demonstrated that HNRNPU functions as a major factor maintaining 3D chromatin architecture, suggesting important roles of NM-associated proteins in genome organization.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromosomes/genetics , Genome/genetics , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , Animals , Chromatin/genetics , Hepatocytes/metabolism , Mice , Nuclear Matrix/genetics
9.
J Lipid Res ; 61(12): 1589-1604, 2020 12.
Article in English | MEDLINE | ID: mdl-32978274

ABSTRACT

Beiging of white adipose tissue (WAT) has beneficial effects on metabolism. Although it is known that beige adipocytes are active in lipid catabolism and thermogenesis, how they are regulated deserves more explorations. In this study, we demonstrate that stearoyl-CoA desaturase 1 (SCD1) in subcutaneous WAT (scWAT) responded to cold stimulation and was able to promote mobilization of triacylglycerol [TAG (triglyceride)]. In vitro studies showed that SCD1 promoted lipolysis in C3H10T1/2 white adipocytes. The lipolytic effect was contributed by one of SCD1's products, oleic acid (OA). OA upregulated adipose TAG lipase and hormone-sensitive lipase expression. When SCD1 was overexpressed in the scWAT of mice, lipolysis was enhanced, and oxygen consumption and heat generation were increased. These effects were also demonstrated by the SCD1 knockdown experiments in mice. In conclusion, our study suggests that SCD1, known as an enzyme for lipid synthesis, plays a role in upregulating lipid mobilization through its desaturation product, OA.


Subject(s)
Adipose Tissue, White/metabolism , Lipid Metabolism , Stearoyl-CoA Desaturase/metabolism , Subcutaneous Fat/metabolism , Animals , Mice
10.
J Biol Chem ; 294(24): 9642-9654, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31061100

ABSTRACT

ß-Catenin signaling is triggered by WNT proteins and is an important pathway that negatively regulates adipogenesis. However, the mechanisms controlling the expression of WNT proteins during adipogenesis remain incompletely understood. Lysine demethylase 5A (KDM5A) is a histone demethylase that removes trimethyl (me3) marks from lysine 4 of histone 3 (H3K4) and serves as a general transcriptional corepressor. Here, using the murine 3T3-L1 preadipocyte differentiation model and an array of biochemical approaches, including ChIP, immunoprecipitation, RT-qPCR, and immunoblotting assays, we show that Kdm5a is a target gene of CCAAT/enhancer-binding protein ß (C/EBPß), an important early transcription factor required for adipogenesis. We found that C/EBPß binds to the Kdm5a gene promoter and transactivates its expression. We also found that siRNA-mediated KDM5A down-regulation inhibits 3T3-L1 preadipocyte differentiation. The KDM5A knockdown significantly up-regulates the negative regulator of adipogenesis Wnt6, having increased levels of the H3K4me3 mark on its promoter. We further observed that WNT6 knockdown significantly rescues adipogenesis inhibited by the KDM5A knockdown. Moreover, we noted that C/EBPß negatively regulates Wnt6 expression by binding to the Wnt6 gene promoter and repressing Wnt6 transcription. Further experiments indicated that KDM5A interacts with C/EBPß and that their interaction cooperatively inhibits Wnt6 transcription. Of note, C/EBPß knockdown impaired the recruitment of KDM5A to the Wnt6 promoter, which had higher H3K4me3 levels. Our results suggest a mechanism involving C/EBPß and KDM5A activities that down-regulates the Wnt/ß-catenin pathway during 3T3-L1 preadipocyte differentiation.


Subject(s)
Adipocytes/cytology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Retinoblastoma-Binding Protein 2/metabolism , Transcriptional Activation , Wnt1 Protein/metabolism , beta Catenin/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Mice , Promoter Regions, Genetic , Retinoblastoma-Binding Protein 2/genetics , Wnt1 Protein/genetics , beta Catenin/genetics
11.
J Biol Chem ; 294(41): 15014-15024, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31427436

ABSTRACT

Taurine, a nonprotein amino acid, is widely distributed in almost all animal tissues. Ingestion of taurine helps to improve obesity and its related metabolic disorders. However, the molecular mechanism underlying the protective role of taurine against obesity is not completely understood. In this study, it was found that intraperitoneal treatment of mice with taurine alleviated high-fat diet (HFD)-induced obesity, improved insulin sensitivity, and increased energy expenditure and adaptive thermogenesis of the mice. Meanwhile, administration of the mice with taurine markedly induced the browning of inguinal white adipose tissue (iWAT) with significantly elevated expression of PGC1α, UCP1, and other thermogenic genes in iWAT. In vitro studies indicated that taurine also induced the development of brown-like adipocytes in C3H10T1/2 white adipocytes. Knockdown of PGC1α blunted the role of taurine in promoting the brown-like adipocyte phenotypes in C3H10T1/2 cells. Moreover, taurine treatment enhanced AMPK phosphorylation in vitro and in vivo, and knockdown of AMPKα1 prevented taurine-mediated induction of PGC1α in C3H10T1/2 cells. Consistently, specific knockdown of PGC1α in iWAT of the HFD-fed mice inhibited taurine-induced browning of iWAT, with the role of taurine in the enhancement of adaptive thermogenesis, the prevention of obesity, and the improvement of insulin sensitivity being partially impaired. These results reveal a functional role of taurine in facilitating the browning of white adipose tissue, which depends on the induction of PGC1α. Our studies also suggest a potential mechanism for the protective role of taurine against obesity, which involves taurine-mediated browning of white adipose tissue.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/pathology , Adipose Tissue, White/drug effects , Adipose Tissue, White/pathology , Obesity/drug therapy , Obesity/pathology , Taurine/pharmacology , AMP-Activated Protein Kinases/metabolism , Adipocytes/drug effects , Adipocytes/pathology , Animals , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Insulin Resistance , Mice , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/drug effects , Taurine/therapeutic use , Thermogenesis/drug effects
12.
J Biol Chem ; 294(31): 11805-11816, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31197036

ABSTRACT

Hepatic steatosis is a hallmark of nonalcoholic fatty liver disease (NAFLD) and is promoted by dysregulated de novo lipogenesis. ATP-citrate lyase (ACLY) is a crucial lipogenic enzyme that is up-regulated in individuals with NAFLD. A previous study has shown that acetylation of ACLY at Lys-540, Lys-546, and Lys-554 (ACLY-3K) increases ACLY protein stability by antagonizing its ubiquitylation, thereby promoting lipid synthesis and cell proliferation in lung cancer cells. But the functional importance of this regulatory mechanism in other cellular or tissue contexts or under other pathophysiological conditions awaits further investigation. Here, we show that ACLY-3K acetylation also promotes ACLY protein stability in AML12 cells, a mouse hepatocyte cell line, and found that the deacetylase sirtuin 2 (SIRT2) deacetylates ACLY-3K and destabilizes ACLY in these cells. Of note, the livers of mice and humans with NAFLD had increased ACLY protein and ACLY-3K acetylation levels and decreased SIRT2 protein levels. Mimicking ACLY-3K acetylation by replacing the three lysines with three glutamines (ACLY-3KQ variant) promoted lipid accumulation both in high glucose-treated AML12 cells and in the livers of high-fat/high-sucrose (HF/HS) diet-fed mice. Moreover, overexpressing SIRT2 in AML12 cells inhibited lipid accumulation, which was more efficiently reversed by overexpressing the ACLY-3KQ variant than by overexpressing WT ACLY. Additionally, hepatic SIRT2 overexpression decreased ACLY-3K acetylation and its protein level and alleviated hepatic steatosis in HF/HS diet-fed mice. Our findings reveal a posttranscriptional mechanism underlying the up-regulation of hepatic ACLY in NAFLD and suggest that the SIRT2/ACLY axis is involved in NAFLD progression.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Non-alcoholic Fatty Liver Disease/pathology , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , ATP Citrate (pro-S)-Lyase/genetics , Acetylation , Animals , Cell Line , Diet, High-Fat , Glucose/pharmacology , Humans , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Non-alcoholic Fatty Liver Disease/metabolism , Protein Stability , RNA Interference , RNA, Small Interfering/metabolism , Sirtuin 2/genetics , Sirtuin 2/metabolism
13.
J Biol Chem ; 293(36): 14012-14021, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30026232

ABSTRACT

Adipose tissue stores energy and plays an important role in energy homeostasis. CCAAT/enhancer-binding protein ß (C/EBPß) is an important early transcription factor for 3T3-L1 preadipocyte differentiation, facilitating mitotic clonal expansion (MCE) and transactivating C/EBPα and peroxisome proliferator-activated receptor-γ (PPARγ) to promote adipogenesis. C/EBPß is induced early, but the expression of antimitotic C/EBPα and PPARγ is not induced until ∼48 h. The delayed expression of C/EBPα and PPARγ is thought to ensure MCE progression, but the molecular mechanism for this delay remains elusive. Here, we show that the zinc-finger transcription factor Krüppel-like factor 10 (KLF10) is induced after adipogenic induction and that its expression positively correlates with that of C/EBPß but inversely correlates with expression of C/EBPα and PPARγ. C/EBPß bound to the KLF10 promoter and transactivated its expression during MCE. KLF10 overexpression in 3T3-L1 preadipocyte repressed adipogenesis and decreased C/EBPα and PPARγ expression, whereas siRNA-mediated down-regulation of KLF10 enhanced adipogenesis and increased C/EBPα and PPARγ expression. Luciferase assays revealed an inhibitory effect of KLF10 on C/EBPα promoter activity. Using promoter deletion and mutation analysis, we identified a KLF10-binding site within the proximal promoter region of C/EBPα. Furthermore, KLF10 interacted with and recruited histone deacetylase 1 (HDAC1) to the C/EBPα promoter, decreasing acetylated histone H4 on the C/EBPα promoter and inactivating C/EBPα transcription. Because C/EBPα can transactivate PPARγ, our results suggest a mechanism by which expression of C/EBPα and PPARγ is delayed via KLF10 expression and shed light on the negative feedback loop for C/EBPß-regulated adipogenesis in 3T3-L1 preadipocyte.


Subject(s)
Adipogenesis , CCAAT-Enhancer-Binding Protein-alpha/genetics , Early Growth Response Transcription Factors/genetics , Kruppel-Like Transcription Factors/genetics , Transcriptional Activation , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Protein-alpha/antagonists & inhibitors , Cell Differentiation , Early Growth Response Transcription Factors/metabolism , Feedback, Physiological , Kruppel-Like Transcription Factors/metabolism , Mice , PPAR gamma/metabolism , Time Factors
14.
Am J Physiol Endocrinol Metab ; 317(6): E1158-E1171, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31550180

ABSTRACT

Although many studies have shown that histamine and its signaling regulate energy homeostasis through the central nervous system, their roles in adipose tissues remain poorly understood. Here, we identified that the histamine H4 receptor (HrH4) was highly expressed in adipocytes at a level higher than that of the other three receptors (i.e., HrH1, HrH2, and HrH3). The HrH4 expression in adipocytes responded to cold through thermogenesis and lipolysis, supported by results from both mouse and cell models. When HrH4 expression was knocked down in the subcutaneous white adipose tissue (scWAT), browning and lipolysis effects triggered by cold were ablated, and the oxygen consumption was also lowered both at the normal and cold conditions. Moreover, mice exhibited browned scWAT, accelerated metabolic rates, and tolerance to hypothermia when 4-methylhistamine (4MH), a selective HrH4 agonist, was adjacently injected to the scWAT. Consistent with these findings, 4MH also triggered the browning and lipolytic effects in cultured C3H10T1/2 adipocytes. Mechanically, we demonstrated that p38/MAPK and ERK/MAPK pathways were involved in these processes. In conclusion, our findings have uncovered an effective role of HrH4 in adipose tissue browning.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cold Temperature , Oxygen Consumption/genetics , Receptors, Histamine H4/genetics , Subcutaneous Fat/metabolism , Thermogenesis/genetics , 3T3-L1 Cells , Adipocytes/drug effects , Adipose Tissue, White/drug effects , Animals , Basal Metabolism/drug effects , Basal Metabolism/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Knockdown Techniques , Histamine Agonists/pharmacology , Lipolysis/drug effects , Lipolysis/genetics , MAP Kinase Signaling System , Methylhistamines/pharmacology , Mice , Oxygen Consumption/drug effects , Receptors, Histamine H4/agonists , Receptors, Histamine H4/metabolism , Subcutaneous Fat/drug effects , Thermogenesis/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
15.
J Cell Mol Med ; 22(10): 5097-5108, 2018 10.
Article in English | MEDLINE | ID: mdl-30044535

ABSTRACT

Accelerated marrow adipogenesis has been associated with ageing and osteoporosis and is thought to be because of an imbalance between adipogenic and osteogenic differentiation of mesenchymal stem cell (MSCs). We have previously found that lysyl oxidase (Lox) inhibition disrupts BMP4-induced adipocytic lineage commitment and differentiation of MSCs. In this study, we found that lox inhibition dramatically up-regulates BMP4-induced expression of CCAAT/enhancer binding protein (C/EBP) homologous protein 10 (CHOP-10), which then promotes BMP4-induced osteogenesis of MSCs both in vitro and in vivo. Specifically, Lox inhibition or CHOP-10 up-regulation activated Wnt/ß-catenin signalling to enhance BMP4-induced osteogenesis, with pro-adipogenic p38 MAPK and Smad signalling suppressed. Together, we demonstrate that Lox/CHOP-10 crosstalk regulates BMP4-induced osteogenic and adipogenic fate determination of MSCs, presenting a promising therapeutic target for osteoporosis and other bone diseases.


Subject(s)
Bone Morphogenetic Protein 4/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Protein-Lysine 6-Oxidase/genetics , Transcription Factor CHOP/genetics , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Mice , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/therapy , Wnt Signaling Pathway/genetics , p38 Mitogen-Activated Protein Kinases/genetics
16.
J Biol Chem ; 292(28): 11740-11750, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28572510

ABSTRACT

Polycystic ovary syndrome is a common endocrine disorder and a major cause of anovulatory sterility in women at reproductive age. Most patients with polycystic ovary syndrome have hyperandrogenism, caused by excess androgen synthesis. Bone morphogenetic protein 4 (BMP4) is an essential regulator of embryonic development and organ formation, and recent studies have also shown that BMP4 may be involved in female steroidogenesis process. However, the effect of BMP4 on hyperandrogenism remains unknown. Here, using a female mouse model of hyperandrogenism, we found that ovarian BMP4 levels were significantly decreased in hyperandrogenism. Elevated androgens inhibited BMP4 expression via activation of androgen receptors. Moreover, BMP4 treatment suppressed androgen synthesis in theca cells and promoted estrogen production in granulosa cells by regulating the expression of steroidogenic enzymes, including CYP11A, HSD3B2, CYP17A1, and CYP19A1 Consistently, knockdown of BMP4 augmented androgen levels and inhibited estrogen levels. Mechanistically, Smad signaling rather than the p38 MAPK pathway regulated androgen and estrogen formation, thereby mediating the effect of BMP4. Of note, BMP4-transgenic mice were protected against hyperandrogenism. Our observations clarify a vital role of BMP4 in controlling sex hormone levels and offer new insights into intervention for managing hyperandrogenism by targeting the BMP4-Smad signaling pathway.


Subject(s)
Bone Morphogenetic Protein 4/metabolism , Disease Models, Animal , Hyperandrogenism/etiology , Ovary/metabolism , Polycystic Ovary Syndrome/physiopathology , Signal Transduction , Smad4 Protein/metabolism , Androgens/metabolism , Androgens/pharmacology , Animals , Bone Morphogenetic Protein 4/antagonists & inhibitors , Bone Morphogenetic Protein 4/genetics , Cells, Cultured , Dehydroepiandrosterone , Down-Regulation/drug effects , Estrogens/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Granulosa Cells/pathology , Mice, Inbred C57BL , Mice, Transgenic , Ovary/drug effects , Ovary/pathology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , RNA Interference , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Smad4 Protein/antagonists & inhibitors , Smad4 Protein/genetics , Theca Cells/drug effects , Theca Cells/metabolism , Theca Cells/pathology
17.
J Cell Mol Med ; 21(9): 2153-2162, 2017 09.
Article in English | MEDLINE | ID: mdl-28374574

ABSTRACT

The intra-articular injection of adipose-derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S-ASCs) and visceral ASCs (V-ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S-ASCs, V-ASCs or phosphate-buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co-culturing with macrophages. The proliferation of V-ASCs was significantly greater than that of S-ASCs, but S-ASCs had the greater adipogenic capacity than V-ASCs. In addition, the infracted cartilage treated with S-ASCs showed significantly greater improvement than cartilage treated with PBS or V-ASCs. Moreover, S-ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.


Subject(s)
Intra-Abdominal Fat/cytology , Osteoarthritis, Knee/therapy , Stem Cell Transplantation , Stem Cells/cytology , Subcutaneous Fat/cytology , Animals , Anti-Inflammatory Agents/metabolism , Cartilage, Articular/pathology , Chondrogenesis/genetics , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Humans , Injections, Intra-Articular , Interleukin-6/metabolism , Lipopolysaccharides , Nitric Oxide Synthase Type II/metabolism , Osteoarthritis, Knee/pathology , Phenotype , Rats, Sprague-Dawley , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Biochem Biophys Res Commun ; 491(3): 814-820, 2017 09 23.
Article in English | MEDLINE | ID: mdl-28647369

ABSTRACT

Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, White/metabolism , Copper/metabolism , Electron Transport Complex IV/biosynthesis , Insulin Resistance , Insulin/metabolism , Obesity/metabolism , Adipocytes/pathology , Adipose Tissue, White/pathology , Animals , Cells, Cultured , Down-Regulation , Male , Mice , Mice, Inbred C57BL , Molecular Chaperones , Obesity/pathology
SELECTION OF CITATIONS
SEARCH DETAIL