Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.012
Filter
Add more filters

Publication year range
1.
Cell ; 182(2): 317-328.e10, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32526205

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive malignancy with its global incidence and mortality rate continuing to rise, although early detection and surveillance are suboptimal. We performed serological profiling of the viral infection history in 899 individuals from an NCI-UMD case-control study using a synthetic human virome, VirScan. We developed a viral exposure signature and validated the results in a longitudinal cohort with 173 at-risk patients who had long-term follow-up for HCC development. Our viral exposure signature significantly associated with HCC status among at-risk individuals in the validation cohort (area under the curve: 0.91 [95% CI 0.87-0.96] at baseline and 0.98 [95% CI 0.97-1] at diagnosis). The signature identified cancer patients prior to a clinical diagnosis and was superior to alpha-fetoprotein. In summary, we established a viral exposure signature that can predict HCC among at-risk patients prior to a clinical diagnosis, which may be useful in HCC surveillance.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Virus Diseases/pathology , Adult , Aged , Area Under Curve , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Case-Control Studies , Cohort Studies , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide , ROC Curve , Risk Factors , Virus Diseases/complications , Young Adult , alpha-Fetoproteins/analysis
2.
Nature ; 604(7906): 479-485, 2022 04.
Article in English | MEDLINE | ID: mdl-35444323

ABSTRACT

Protonic ceramic electrochemical cells hold promise for operation below 600 °C (refs. 1,2). Although the high proton conductivity of the bulk electrolyte has been demonstrated, it cannot be fully used in electrochemical full cells because of unknown causes3. Here we show that these problems arise from poor contacts between the low-temperature processed oxygen electrode-electrolyte interface. We demonstrate that a simple acid treatment can effectively rejuvenate the high-temperature annealed electrolyte surface, resulting in reactive bonding between the oxygen electrode and the electrolyte and improved electrochemical performance and stability. This enables exceptional protonic ceramic fuel-cell performance down to 350 °C, with peak power densities of 1.6 W cm-2 at 600 °C, 650 mW cm-2 at 450 °C and 300 mW cm-2 at 350 °C, as well as stable electrolysis operations with current densities above 3.9 A cm-2 at 1.4 V and 600 °C. Our work highlights the critical role of interfacial engineering in ceramic electrochemical devices and offers new understanding and practices for sustainable energy infrastructures.

3.
Mol Cell ; 77(5): 999-1013.e6, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32017896

ABSTRACT

U6 snRNA, as an essential component of the catalytic core of the pre-mRNA processing spliceosome, is heavily modified post-transcriptionally, with 2'-O-methylation being most common. The role of these modifications in pre-mRNA splicing as well as their physiological function in mammals have remained largely unclear. Here we report that the La-related protein LARP7 functions as a critical cofactor for 2'-O-methylation of U6 in mouse male germ cells. Mechanistically, LARP7 promotes U6 loading onto box C/D snoRNP, facilitating U6 2'-O-methylation by box C/D snoRNP. Importantly, ablation of LARP7 in the male germline causes defective U6 2'-O-methylation, massive alterations in pre-mRNA splicing, and spermatogenic failure in mice, which can be rescued by ectopic expression of wild-type LARP7 but not an U6-loading-deficient mutant LARP7. Our data uncover a novel role of LARP7 in regulating U6 2'-O-methylation and demonstrate the functional requirement of such modification for splicing fidelity and spermatogenesis in mice.


Subject(s)
RNA Precursors/metabolism , RNA Splicing , RNA, Messenger/metabolism , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/metabolism , Spermatogenesis , Spermatozoa/metabolism , Spliceosomes/metabolism , Animals , Fertility , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Knockout , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Small Nuclear/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Signal Transduction , Spermatogenesis/genetics , Spliceosomes/genetics
4.
J Virol ; 98(2): e0195423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289102

ABSTRACT

During the life cycle of mosquito-borne flaviviruses, substantial subgenomic flaviviral RNA (sfRNA) is produced via incomplete degradation of viral genomic RNA by host XRN1. Zika virus (ZIKV) sfRNA has been detected in mosquito and mammalian somatic cells. Human neural progenitor cells (hNPCs) in the developing brain are the major target cells of ZIKV, and antiviral RNA interference (RNAi) plays a critical role in hNPCs. However, whether ZIKV sfRNA was produced in ZIKV-infected hNPCs as well as its function remains not known. In this study, we demonstrate that abundant sfRNA was produced in ZIKV-infected hNPCs. RNA pulldown and mass spectrum assays showed ZIKV sfRNA interacted with host proteins RHA and PACT, both of which are RNA-induced silencing complex (RISC) components. Functionally, ZIKV sfRNA can antagonize RNAi by outcompeting small interfering RNAs (siRNAs) in binding to RHA and PACT. Furthermore, the 3' stem loop (3'SL) of sfRNA was responsible for RISC components binding and RNAi inhibition, and 3'SL can enhance the replication of a viral suppressor of RNAi (VSR)-deficient virus in a RHA- and PACT-dependent manner. More importantly, the ability of binding to RISC components is conversed among multiple flaviviral 3'SLs. Together, our results identified flavivirus 3'SL as a potent VSR in RNA format, highlighting the complexity in virus-host interaction during flavivirus infection.IMPORTANCEZika virus (ZIKV) infection mainly targets human neural progenitor cells (hNPCs) and induces cell death and dysregulated cell-cycle progression, leading to microcephaly and other central nervous system abnormalities. RNA interference (RNAi) plays critical roles during ZIKV infections in hNPCs, and ZIKV has evolved to encode specific viral proteins to antagonize RNAi. Herein, we first show that abundant sfRNA was produced in ZIKV-infected hNPCs in a similar pattern to that in other cells. Importantly, ZIKV sfRNA acts as a potent viral suppressor of RNAi (VSR) by competing with siRNAs for binding RISC components, RHA and PACT. The 3'SL of sfRNA is responsible for binding RISC components, which is a conserved feature among mosquito-borne flaviviruses. As most known VSRs are viral proteins, our findings highlight the importance of viral non-coding RNAs during the antagonism of host RNAi-based antiviral innate immunity.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Humans , Mammals/genetics , RNA Interference , RNA, Small Interfering/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Induced Silencing Complex/metabolism , Subgenomic RNA , Viral Proteins/metabolism , Virus Replication , Zika Virus/physiology , Zika Virus Infection/immunology , Zika Virus Infection/virology
5.
Chem Rev ; 123(21): 12105-12134, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37871288

ABSTRACT

With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.


Subject(s)
Wearable Electronic Devices , Humans , Electric Power Supplies , Electronics , Technology
6.
Proc Natl Acad Sci U S A ; 119(40): e2203272119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161892

ABSTRACT

Many icosahedral viruses assemble proteinaceous precursors called proheads or procapsids. Proheads are metastable structures that undergo a profound structural transition known as expansion that transforms an immature unexpanded head into a mature genome-packaging head. Bacteriophage T4 is a model virus, well studied genetically and biochemically, but its structure determination has been challenging because of its large size and unusually prolate-shaped, ∼1,200-Å-long and ∼860-Å-wide capsid. Here, we report the cryogenic electron microscopy (cryo-EM) structures of T4 capsid in both of its major conformational states: unexpanded at a resolution of 5.1 Å and expanded at a resolution of 3.4 Å. These are among the largest structures deposited in Protein Data Bank to date and provide insights into virus assembly, head length determination, and shell expansion. First, the structures illustrate major domain movements and ∼70% additional gain in inner capsid volume, an essential transformation to contain the entire viral genome. Second, intricate intracapsomer interactions involving a unique insertion domain dramatically change, allowing the capsid subunits to rotate and twist while the capsomers remain fastened at quasi-threefold axes. Third, high-affinity binding sites emerge for a capsid decoration protein that clamps adjacent capsomers, imparting extraordinary structural stability. Fourth, subtle conformational changes at capsomers' periphery modulate intercapsomer angles between capsomer planes that control capsid length. Finally, conformational changes were observed at the symmetry-mismatched portal vertex, which might be involved in triggering head expansion. These analyses illustrate how small changes in local capsid subunit interactions lead to profound shifts in viral capsid morphology, stability, and volume.


Subject(s)
Bacteriophage T4 , Capsid , Virion , Bacteriophage T4/chemistry , Bacteriophage T4/physiology , Capsid/chemistry , Capsid Proteins/chemistry , Cryoelectron Microscopy , Protein Domains , Virion/chemistry , Virus Assembly
7.
Chem Soc Rev ; 53(9): 4349-4373, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38619095

ABSTRACT

Contact-electro-catalysis (CEC) is an emerging field that utilizes electron transfer occurring at the liquid-solid and even liquid-liquid interfaces because of the contact-electrification effect to stimulate redox reactions. The energy source of CEC is external mechanical stimuli, and solids to be used are generally organic as well as in-organic materials even though they are chemically inert. CEC has rapidly garnered extensive attention and demonstrated its potential for both mechanistic research and practical applications of mechanocatalysis. This review aims to elucidate the fundamental principle, prominent features, and applications of CEC by compiling and analyzing the recent developments. In detail, the theoretical foundation for CEC, the methods for improving CEC, and the unique advantages of CEC have been discussed. Furthermore, we outline a roadmap for future research and development of CEC. We hope that this review will stimulate extensive studies in the chemistry community for investigating the CEC, a catalytic process in nature.

8.
Carcinogenesis ; 45(8): 582-594, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38629149

ABSTRACT

Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored. Earlier, we demonstrated that pro-inflammatory mediator macrophage migration inhibitory factor (MIF) enhances disease progression by inhibiting its downstream transcriptional factor nuclear receptor subfamily 3 group C member 2 (NR3C2). Here, we provide evidence that MIF and NR3C2 interactively regulate metabolic reprogramming, resulting in MIF-induced cancer growth and progression in PDAC. MIF positively correlates with the HK1 (hexokinase 1), HK2 (hexokinase 2) and LDHA (lactate dehydrogenase) expression and increased pyruvate and lactate production in PDAC patients. Additionally, MIF augments glucose uptake and lactate efflux by upregulating HK1, HK2 and LDHA expression in pancreatic cancer cells in vitro and in mouse models of PDAC. Conversely, a reduction in HK1, HK2 and LDHA expression is observed in tumors with high NR3C2 expression in PDAC patients. NR3C2 suppresses HK1, HK2 and LDHA expression, thereby inhibiting glucose uptake and lactate efflux in pancreatic cancer. Mechanistically, MIF-mediated regulation of glycolytic metabolism involves the activation of the mitogen-activated protein kinase-ERK signaling pathway, whereas NR3C2 interacts with the activator protein 1 to regulate glycolysis. Our findings reveal an interactive role of the MIF/NR3C2 axis in regulating glucose metabolism supporting tumor growth and progression and may be a potential target for designing novel approaches for improving disease outcome.


Subject(s)
Carcinoma, Pancreatic Ductal , Glucose , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Pancreatic Neoplasms , Transcription Factor AP-1 , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Animals , Mice , Glucose/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Transcription Factor AP-1/metabolism , Cell Line, Tumor , MAP Kinase Signaling System , Gene Expression Regulation, Neoplastic , Hexokinase/metabolism , Hexokinase/genetics , Cell Proliferation , Signal Transduction , Metabolic Reprogramming
9.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Article in English | MEDLINE | ID: mdl-38683122

ABSTRACT

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Subject(s)
Apoptosis , Autophagy , Inflammasomes , Melatonin , NLR Family, Pyrin Domain-Containing 3 Protein , Respiratory Syncytial Virus Infections , Toll-Like Receptor 4 , Humans , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Central Nervous System/virology , Central Nervous System/metabolism , Central Nervous System/drug effects , Central Nervous System/pathology , Cytokines/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Melatonin/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/virology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/physiology , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism
10.
Prostate ; 84(5): 460-472, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38192023

ABSTRACT

BACKGROUND: Through whole-exome sequencing of 60 formalin-fixed paraffin-embedded Nigerian (NGRn) benign prostatic hyperplasia (BPH) samples, we identified germline and somatic alterations in apoptotic pathways impacting BPH development and progression. Prostate enlargement is a common occurrence in male aging; however, this enlargement can lead to lower urinary tract symptoms that negatively impact quality of life. This impact is disproportionately present in men of African ancestry. BPH pathophysiology is poorly understood and studies examining non-European populations are lacking. METHODS: In this study, NGRn BPH, normal prostate, and prostate cancer (PCa) tumor samples were sequenced and compared to characterize genetic alterations in NGRn BPH. RESULTS: Two hundred and two nonbenign, ClinVar-annotated germline variants were present in NGRn BPH samples. Six genes [BRCA1 (92%), HSD3B1 (85%), TP53 (37%), PMS2 (23%), BARD1 (20%), and BRCA2 (17%)] were altered in at least 10% of samples; however, compared to NGRn normal and tumor, the frequency of alterations in BPH samples showed no significant differences at the gene or variant level. BRCA2_rs11571831 and TP53_rs1042522 germline alterations had a statistically significant co-occurrence interaction in BPH samples. In at least two BPH samples, 173 genes harbored somatic variants known to be clinically actionable. Three genes (COL18A1, KIF16B, and LRP1) showed a statistically significant (p < 0.05) higher frequency in BPH. NGRn BPH also had five gene pairs (PKD1/KIAA0100, PKHD1/PKD1, DNAH9/LRP1B, NWD1/DCHS2, and TCERG1/LMTK2) with statistically significant co-occurring interactions. Two hundred and seventy-nine genes contained novel somatic variants in NGRn BPH. Three genes (CABP1, FKBP1C, and RP11-595B24.2) had a statistically significant (p < 0.05) higher alteration frequency in NGRn BPH and three were significantly higher in NGRn tumor (CACNA1A, DMKN, and CACNA2D2). Pairwise Fisher's exact tests showed 14 gene pairs with statistically significant (p < 0.05) interactions and four interactions approaching significance (p < 0.10). Mutational patterns in NGRn BPH were similar to COSMIC (Catalog of Somatic Mutations in Cancer) signatures associated with aging and dysfunctional DNA damage repair. CONCLUSIONS: NGRn BPH contained significant germline alteration interactions (BRCA2_rs11571831 and TP53_rs1042522) and increased somatic alteration frequencies (LMTK2, LRP1, COL18A1, CABP1, and FKBP1C) that impact apoptosis. Normal prostate development is maintained by balancing apoptotic and proliferative activity. Dysfunction in either mechanism can lead to abnormal prostate growth. This work is the first to examine genomic sequencing in NGRn BPH and provides data that fill known gaps in the understanding BPH and how it impacts men of African ancestry.


Subject(s)
Prostatic Hyperplasia , Prostatic Neoplasms , Humans , Male , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/pathology , Exome Sequencing , Quality of Life , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/pathology , Axonemal Dyneins/genetics , Transcriptional Elongation Factors/genetics , Kinesins/genetics
11.
Br J Haematol ; 204(4): 1414-1421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272453

ABSTRACT

We conducted a retrospective, multicentre study to compare consolidation therapy with or without first-line autologous stem cell transplant (ASCT) for peripheral T-cell lymphoma (PTCL) patients in a real-world setting. We enrolled 347 PTCL patients who achieved complete response after first-line treatment. Of these, 257 received consolidation chemotherapy (non-ASCT group) and 90 received ASCT (ASCT group). Clinical outcomes were comparable between ASCT and non-ASCT groups. After propensity score matching, the 2-year cumulative incidence of treatment-related mortality and relapse remained similar between groups (1.9% vs. 2.0%, p = 0.985; 24.7% vs. 47.1%, p = 0.021). However, significant differences emerged in progression-free survival and overall survival probabilities. Within the T-cell lymphoma subgroup, ASCT patients exhibited favourable outcomes compared to non-ASCT patients: 2-year progression-free survival (73.4% vs. 50.8%, p = 0.024) and overall survival (92.1% vs. 73.5%, p = 0.021). Notably, no significant differences were observed for patients with NK/T-cell lymphoma. These real-world data suggest that up-front ASCT is a safe and effective consolidation option for PTCL patients in remission, particularly those with T-cell lymphoma.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Humans , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local , Stem Cell Transplantation , Pathologic Complete Response , Transplantation, Autologous
12.
BMC Med ; 22(1): 267, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926820

ABSTRACT

BACKGROUND: Evidence from observational studies indicates that lung cancer screening (LCS) guidelines with high rates of lung cancer (LC) underdiagnosis, and although current screening guidelines have been updated and eligibility criteria for screening have been expanded, there are no studies comparing the efficiency of LCS guidelines in Chinese population. METHODS: Between 2005 and 2022, 31,394 asymptomatic individuals were screened using low-dose computed tomography (LDCT) at our institution. Demographic data and relevant LC risk factors were collected. The efficiency of the LCS for each guideline criteria was expressed as the efficiency ratio (ER). The inclusion rates, eligibility rates, LC detection rates, and ER based on the different eligibility criteria of the four guidelines were comparatively analyzed. The four guidelines were as follows: China guideline for the screening and early detection of lung cancer (CGSL), the National Comprehensive Cancer Network (NCCN), the United States Preventive Services Task Force (USPSTF), and International Early Lung Cancer Action Program (I-ELCAP). RESULTS: Of 31,394 participants, 298 (155 women, 143 men) were diagnosed with LC. For CGSL, NCCN, USPSTF, and I-ELCAP guidelines, the eligibility rates for guidelines were 13.92%, 6.97%, 6.81%, and 53.46%; ERe for eligibility criteria were 1.46%, 1.64%, 1.51%, and 1.13%, respectively; and for the inclusion rates, they were 19.0%, 9.5%, 9.3%, and 73.0%, respectively. LCs which met the screening criteria of CGSL, NCCN, USPSTF, and I-ELCAP guidelines were 29.2%, 16.4%, 14.8%, and 86.6%, respectively. The age and smoking criteria for CGSL were stricter, hence resulting in lower rates of LC meeting the screening criteria. The CGSL, NCCN, and USPSTF guidelines showed the highest underdiagnosis in the 45-49 age group (17.4%), while the I-ELCAP guideline displayed the highest missed diagnosis rate (3.0%) in the 35-39 age group. Males and females significantly differed in eligibility based on the criteria of the four guidelines (P < 0.001). CONCLUSIONS: The I-ELCAP guideline has the highest eligibility rate for both males and females. But its actual efficiency ratio for those deemed eligible by the guideline was the lowest. Whereas the NCCN guideline has the highest ERe value for those deemed eligible by the guideline.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/diagnosis , Male , China , Female , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/standards , Middle Aged , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Aged , Practice Guidelines as Topic , Mass Screening/methods , Mass Screening/standards , Adult
13.
J Neuroinflammation ; 21(1): 147, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835057

ABSTRACT

BACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mice, Inbred C57BL , Animals , Mice , Male , Neurological Rehabilitation/methods , Prevotella , Gastrointestinal Microbiome/physiology , Phosphatidylinositol 3-Kinases/metabolism
14.
Small ; 20(15): e2306655, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009791

ABSTRACT

Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.


Subject(s)
Electricity , Wearable Electronic Devices , Humans
15.
Small ; 20(29): e2400666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38368259

ABSTRACT

Compared to conventional radiotherapy (RT), FLASH-RT delivers ultra-high dose radiation, significantly reducing damage to normal tissue while guaranteeing the effect of cancer treatment. However, cancer recurrence and metastasis frequently occur after all RT due to the existence of intractable cancer stem cells (CSCs). To address this, a biomimetic nanoplatform (named TAFL) of tumor-derived exosome fusion liposomes is designed by co-loading aggregation-induced emission photothermal agents, TPE-BBT, and anti-cancer drugs, aspirin, aiming to clear CSCs for inhibiting cancer recurrence and metastasis after FLASH-RT therapy . Aspirin released in TAFL system triggered by laser irradiation can induce apoptosis and DNA damage of 4T1 CSCs, comprehensively downregulate their stemness phenotype, and inhibit their sphericity. Furthermore, the TPE-BBT mediated mild-photothermal therapy can alleviate the hypoxic tumor microenvironment, inhibit the DNA repair of CSCs, which further amplifies the effect of aspirin against CSCs, therefore reduces the effective dose of aspirin, making TAFL more biologically safe. In vivo experimental results demonstrated that decreased CSCs population mediated by TAFL system treatment significantly inhibited tumor recurrence and metastasis after FLASH-RT therapy. In summary, this TAFL system   provides a new idea for the future clinical application of FLASH-RT therapy.


Subject(s)
Aspirin , Breast Neoplasms , Neoplasm Metastasis , Neoplastic Stem Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Animals , Female , Aspirin/pharmacology , Aspirin/therapeutic use , Cell Line, Tumor , Neoplasm Recurrence, Local , Mice , Humans , DNA Damage , Tumor Microenvironment/drug effects , Liposomes/chemistry , Apoptosis/drug effects , Biomimetics/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Exosomes/metabolism
16.
Small ; : e2402765, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940416

ABSTRACT

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

17.
J Transl Med ; 22(1): 768, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143624

ABSTRACT

BACKGROUND: Postoperative liver metastasis significantly impacts the prognosis of pancreatic neuroendocrine tumor (panNET) patients after R0 resection. Combining computational pathology and deep learning radiomics can enhance the detection of postoperative liver metastasis in panNET patients. METHODS: Clinical data, pathology slides, and radiographic images were collected from 163 panNET patients post-R0 resection at Fudan University Shanghai Cancer Center (FUSCC) and FUSCC Pathology Consultation Center. Digital image analysis and deep learning identified liver metastasis-related features in Ki67-stained whole slide images (WSIs) and enhanced CT scans to create a nomogram. The model's performance was validated in both internal and external test cohorts. RESULTS: Multivariate logistic regression identified nerve infiltration as an independent risk factor for liver metastasis (p < 0.05). The Pathomics score, which was based on a hotspot and the heterogeneous distribution of Ki67 staining, showed improved predictive accuracy for liver metastasis (AUC = 0.799). The deep learning-radiomics (DLR) score achieved an AUC of 0.875. The integrated nomogram, which combines clinical, pathological, and imaging features, demonstrated outstanding performance, with an AUC of 0.985 in the training cohort and 0.961 in the validation cohort. High-risk group had a median recurrence-free survival of 28.5 months compared to 34.7 months for the low-risk group, showing significant correlation with prognosis (p < 0.05). CONCLUSION: A new predictive model that integrates computational pathologic scores and deep learning-radiomics can better predict postoperative liver metastasis in panNET patients, aiding clinicians in developing personalized treatments.


Subject(s)
Deep Learning , Liver Neoplasms , Neuroendocrine Tumors , Nomograms , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Liver Neoplasms/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/surgery , Neuroendocrine Tumors/diagnostic imaging , Middle Aged , Male , Female , Aged , Adult , Multivariate Analysis , Postoperative Period , Prognosis , Tomography, X-Ray Computed , Radiomics
18.
J Transl Med ; 22(1): 438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720336

ABSTRACT

BACKGROUND: Advanced unresectable gastric cancer (GC) patients were previously treated with chemotherapy alone as the first-line therapy. However, with the Food and Drug Administration's (FDA) 2022 approval of programmed cell death protein 1 (PD-1) inhibitor combined with chemotherapy as the first-li ne treatment for advanced unresectable GC, patients have significantly benefited. However, the significant costs and potential adverse effects necessitate precise patient selection. In recent years, the advent of deep learning (DL) has revolutionized the medical field, particularly in predicting tumor treatment responses. Our study utilizes DL to analyze pathological images, aiming to predict first-line PD-1 combined chemotherapy response for advanced-stage GC. METHODS: In this multicenter retrospective analysis, Hematoxylin and Eosin (H&E)-stained slides were collected from advanced GC patients across four medical centers. Treatment response was evaluated according to iRECIST 1.1 criteria after a comprehensive first-line PD-1 immunotherapy combined with chemotherapy. Three DL models were employed in an ensemble approach to create the immune checkpoint inhibitors Response Score (ICIsRS) as a novel histopathological biomarker derived from Whole Slide Images (WSIs). RESULTS: Analyzing 148,181 patches from 313 WSIs of 264 advanced GC patients, the ensemble model exhibited superior predictive accuracy, leading to the creation of ICIsNet. The model demonstrated robust performance across four testing datasets, achieving AUC values of 0.92, 0.95, 0.96, and 1 respectively. The boxplot, constructed from the ICIsRS, reveals statistically significant disparities between the well response and poor response (all p-values < = 0.001). CONCLUSION: ICIsRS, a DL-derived biomarker from WSIs, effectively predicts advanced GC patients' responses to PD-1 combined chemotherapy, offering a novel approach for personalized treatment planning and allowing for more individualized and potentially effective treatment strategies based on a patient's unique response situations.


Subject(s)
Deep Learning , Immune Checkpoint Inhibitors , Programmed Cell Death 1 Receptor , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Male , Female , Treatment Outcome , Middle Aged , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Aged , Retrospective Studies , ROC Curve , Adult
19.
Plant Physiol ; 194(1): 530-545, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37757884

ABSTRACT

Soil salinity is often heterogeneous in saline fields. Nonuniform root salinity increases nitrate uptake into cotton (Gossypium hirsutum) root portions exposed to low salinity, which may be regulated by root portions exposed to high salinity through a systemic long-distance signaling mechanism. However, the signals transmitted between shoots and roots and their precise molecular mechanisms for regulating nitrate uptake remain unknown. Here, we showed that nonuniform root salinity treatment using split-root systems increases the expression of C-TERMINALLY ENCODED PEPTIDE (GhCEP) genes in high-saline-treated root portions. GhCEP peptides originating in high-saline-treated root portions act as ascending long-distance mobile signals transported to the shoots to promote the expression of CEP DOWNSTREAM (GhCEPD) genes by inducing the expression of CEP receptor (GhCEPR) genes. The shoot-derived GhCEPD polypeptides act as descending mobile signals transported to the roots through the phloem, increasing the expression of nitrate transport genes NITRATE TRANSPORTER 1.1 (GhNRT1.1), GhNRT2.1, and GhNRT1.5 in nonsaline-treated root portions, thereby increasing nitrate uptake in the nonsaline-treated root portions. This study indicates that GhCEP and GhCEPD signals are transported between roots and shoots to increase nitrate uptake in cotton, and the transport from the nonsaline root side is in response to nonuniform root salinity distribution.


Subject(s)
Gossypium , Nitrates , Gossypium/metabolism , Nitrates/metabolism , Salinity , Ion Transport , Salt Stress , Plant Roots/metabolism
20.
Plant Physiol ; 194(1): 376-390, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37706538

ABSTRACT

Rice (Oryza sativa) production consumes a huge amount of fresh water, and improvement of drought tolerance in rice is important to conserve water resources and minimize yield loss under drought. However, processes to improve drought tolerance in rice have not been fully explored, and a comparative study between rice and wheat (Triticum aestivum) is an effective method to understand the mechanisms determining drought tolerance capacity. In the present study, we applied short-term drought stress to Shanyou 63 rice and Yannong 19 wheat to create a range of water potentials and investigated the responses of gas exchange, plant hydraulic conductance, and root morphological and anatomical traits to soil drought. We found that photosynthesis in rice was more sensitive to drought stress than that in wheat, which was related to differences in the decline of stomatal conductance and plant hydraulic conductance (Kplant). The decline of Kplant under drought was mainly driven by the decrease of soil-root interface hydraulic conductance (Ki) because Ki was more sensitive to drought than root and shoot hydraulic conductance and the soil-root interface contributed to >40% of whole-plant hydraulic resistance in both crops. Root shrinkage in response to drought was more severe in rice than that in wheat, which explains the larger depression of Ki and Kplant under drought stress in rice. We concluded that the decline of Ki drives the depression of Kplant and photosynthesis in both crops, and the plasticity of root morphology and anatomy is important in determining drought tolerance capacity.


Subject(s)
Oryza , Plant Leaves , Plant Leaves/physiology , Soil , Droughts , Oryza/physiology , Triticum/physiology , Plant Roots/physiology , Water/physiology , Photosynthesis , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL