Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Small ; : e2310497, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351670

ABSTRACT

Aqueous zinc ion batteries have received widespread attention due to their merits of high safety, high theoretical specific capacity, low cost, and environmental benignity. Nevertheless, the irreversible issues of Zn anode deriving from side reactions and dendrite growth have hindered its commercialization in large-scale energy storage systems. Herein, a zinc phosphate tetrahydrate (Zn3 (PO4 )2 ·4H2 O, ZnPO) coating layer is in situ formed on the bare Zn by spontaneous redox reactions at room temperature to tackle the above issues. Particularly, the dense and brick-like ZnPO layer can effectively separate the anode surface from the aqueous electrolyte, thus suppressing the serious side reactions. Moreover, the ZnPO layer with high ionic conductivity, high Zn2+ transference number, and low nucleation barrier permits rapid Zn2+ transport and enables uniform Zn deposition, ensuring dendrite-free Zn deposition. As a result, the ZnPO@Zn symmetric battery achieves a high Coulombic efficiency of 99.8% and displays ultrahigh cycle stability over 6000 h (> 8 months), far surpassing its counterparts. Furthermore, the ZnPO@Zn||MnO2 full battery exhibits excellent electrochemical performances. Therefore, this work provides a new reference for simple and large-scale preparation of highly reversible Zn metal anodes, and has great potential for practical applications.

2.
BMC Anesthesiol ; 23(1): 36, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721105

ABSTRACT

OBJECTIVE: We aimed to investigate the effects of different doses of dexmedetomidine (Dex) on evoked potentials in adult patients undergoing spinal surgery under intravenous anesthesia with low-concentration desflurane. METHODS: Ninety patients were divided into three groups at random. To maintain anesthesia in the control group (group C), desflurane 0.3 MAC (minimal alveolar concentration), propofol, and remifentanil were administered. Dex (0.5 µg·kg-1) was injected for 10 min as a loading dose in the low-dose Dex group (group DL), then adjusted to 0.2 µg·kg-1·h-1 until the operation was completed. Dex (1 µg·kg-1) was injected for 10 min as a loading dose in the high-dose Dex group (group DH), then adjusted to 0.7 µg·kg-1·h-1 until the operation was completed. The additional medications were similar to those given to group C. The perioperative hemodynamics, body temperature, intraoperative drug dosages, fluid volume, urine volume, blood loss, the latency and amplitude of somatosensory evoked potentials (SEPs) at four different time points, the incidence of positive cases of SEPs and transcranial motor evoked potentials (tcMEPs), and perioperative adverse reactions were all recorded. RESULTS: Data from 79 patients were analyzed. The MAP measured at points T2-T4 in group DH was higher than at corresponding points in group C (P < 0.05). The MAP at point T4 in group DL was higher than at corresponding points in group C (P < 0.05). The remifentanil dosage in group DH was significantly lower than in group C (P = 0.015). The fluid volume in group DL was significantly lower than in group C (P = 0.009). There were no significant differences among the three groups in the amplitude and latency of SEP at different time points, nor in the incidence of warning SEP signals. The incidence of positive tcMEP signals did not differ significantly between groups C and DL (P > 0.05), but was significantly higher in group DH than in groups DL (P < 0.05) or C (P < 0.05). The incidence of intraoperative hypertension was significantly higher in group DH than in group C (P = 0.017). CONCLUSIONS: Low-dose Dex has no effect on the SEPs and tcMEPs monitoring during spinal surgery. High-dose Dex has no effect on SEPs monitoring, but it may increase the rate of false positive tcMEPs signals and the incidence of intraoperative hypertension. TRIAL REGISTRATION: This study has completed the registration of the Chinese Clinical Trial Center at 11/09/2020 with the registration number ChiCTR2000038154.


Subject(s)
Dexmedetomidine , Hypertension , Adult , Humans , Anesthesia, Intravenous , Desflurane , Remifentanil , Anesthesia, Inhalation , Evoked Potentials, Somatosensory
3.
Ceram Int ; 48(23): 34148-34168, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36059853

ABSTRACT

Food packages have been detected carrying novel coronavirus in multi-locations since the outbreak of COVID-19, causing major concern in the field of food safety. Metal-based supported materials are widely used for sterilization due to their excellent antibacterial properties as well as low biological resistance. As the principal part of antibacterial materials, the active component, commonly referred to Ag, Cu, Zn, etc., plays the main role in inhibiting and killing pathogenic microorganisms by destroying the structure of cells. As another composition of metal-based antibacterial materials, the carrier could support and disperse the active component, which on one hand, could effectively decrease the usage amount of active component, on the other hand, could be processed into various forms to broaden the application range of antibacterial materials. Different from other metal-based antibacterial reviews, in order to highlight the detailed function of various carriers, we divided the carriers into biocompatible and adsorptable types and discussed their different antibacterial effects. Moreover, a novel substitution antibacterial mechanism was proposed. The coating and shaping techniques of metal-based antibacterial materials as well as their applications in food storage at ambient and low temperatures are also comprehensively summarized. This review aims to provide a theoretical basis and reference for researchers in this field to develop new metal-based antibacterial materials.

4.
Nanotechnology ; 32(19): 195403, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33508815

ABSTRACT

The development of renewable energy conversion and storage has triggered the development of electrode materials for oxygen evolution reaction (OER) and supercapacitors. Here we report a highly active Cu doped NiFe nanosheets hydroxide electrode with rich oxygen vacancies (OVs) (denoted as H-NiFeCuO/NF) prepared by in situ anodic electrodeposition on the three-dimensional macroporous nickel foam (NF) substrate followed by heat treatment with H2. The as-prepared H-NiFeCuO/NF electrode showed the initial potential of 1.44 V (versus RHE) for OER and 980 F g-1 specific capacity as supercapacitor in 1 M KOH. Further investigation suggested that the tuning of composition and structure by doping copper ions and creating OVs helped accelerate the electrochemical reactions. This practice provides an efficient approach for the fabrication of heteromultimetallic hydroxide monolithic electrode with high performance in OER or supercapacitor application.

5.
J Acoust Soc Am ; 144(2): EL100, 2018 08.
Article in English | MEDLINE | ID: mdl-30180673

ABSTRACT

Both specific airflow resistance and air permeability can be used as a parameter to estimate the sound absorption of textiles. The measurement of specific airflow resistance is specified in ISO 9053 (Int. Standards Org., 1991), but it is known to be inaccurate for low specific airflow resistance. This paper compares the measured specific airflow resistance according to ISO 9053 and those calculated from air permeability according to ISO 9237 (Int. Standards Org., 1995). The sound absorption coefficients predicted by Pieren's model [R. Pieren, Textile Res. J. 82(9), 864-874 (2012)] are compared with measurements by the impedance tube method, which concludes that those predicted from the air permeability are more accurate than those from the measured specific airflow resistance for textiles.

6.
Water Environ Res ; 88(8): 768-78, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27456137

ABSTRACT

Graphene oxide has been used as an adsorbent in wastewater treatment. However, the hydrophily and dispersibility in aqueous solution limit its practical application in environmental protection. In this paper, a novel, environmentally friendly adsorbent, chitosan and chitosan-graphene oxide aerogels with a diverse shape, large specific surface area, and unique porous structure were prepared by a freeze-drying method. The structure of the adsorbents was investigated using scanning electron microscopy, Fourier transform-infrared spectroscopy, and X-ray diffraction (XRD); the specific surface area and swelling capability were also characterized. In addition, removal of diesel oil from seawater by chitosan aerogel (CSAG) and chitosan-graphene oxide aerogel (AGGO-1 and AGGO-2) was studied and batch adsorption experiments were carried out as a function of different adsorbent dosages (0-6 g), contact time (0-120 minutes), pH (3-9), and initial concentrations of oil residue (3-30 g/L) to determine the optimum condition for the adsorption of residue oil from seawater. The results showed that the chitosan-graphene oxide aerogels were more effective to remove diesel oil from seawater compared with pure chitosan aerogel. A removal efficiency ≥ 95% of the chitosan-graphene oxide aerogels could be achieved easily at the initial concentrations of 20 g/L, which indicated that the chitosan-graphene oxide aerogels can be used to treat the industrial oil leakage or effluent in the natural water.


Subject(s)
Chitosan/chemistry , Gasoline , Graphite/chemistry , Seawater/analysis , Water Pollutants, Chemical/isolation & purification , Adsorption , Freeze Drying , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
7.
Water Environ Res ; 88(7): 579-88, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27329054

ABSTRACT

Chitosan, modified with different dosages of graphene oxide (GO) and reduced graphene oxide (rGO), was first prepared, and its adsorption capacity for reactive red (RR) dye in aqueous solutions was investigated, in this paper. The structure and morphology of the adsorbents were characterized by FT-IR, XRD, SEM, EDX, BET, and TGA. The effect of varying parameters (pH, temperature, adsorbent loading, and contact time) was also investigated. The maximum adsorption capacity based on the Langmuir model was found to be 32.16 mg/g. In addition, experimental kinetic data were analyzed by the psuedo-first order and psuedo-second order equation models. The psuedo-second order model proved to be the best model for the adsorption system, which suggested that adsorption might be controlled by the chemical rate-limiting step through sharing of electrons or by covalent forces.


Subject(s)
Chitosan/chemistry , Coloring Agents/chemistry , Graphite/chemistry , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Oxides/chemistry
8.
J Hazard Mater ; 465: 133429, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38232545

ABSTRACT

TiO2/TiOF2 Z-scheme nanosheets have been successfully synthesized for photocatalytic antibacterial. The antibacterial efficiency of TiO2/TiOF2 against E. coli and S. aureus were 99.90 % and 81.89 % at low material concentration (110 µg/mL), respectively, which are higher than those of pure TiO2, TiOF2, and Degussa P25. In situ molecular spectroscopy results demonstrate that the microstructure of the synthesized material can be reconstructed and optimized to enhance the exposure of the active sites·H2O and O2 are effectively adsorbed on the catalyst surface and activated to form OH…Ti and O…Ti surface active species. Furthermore, the dense interface formed in TiO2/TiOF2 acts as an efficient transport path for photoexcited electrons from TiO2 to TiOF2, and thus accelerates the formation of reactive oxygen species. Finally, the mechanism of bacterial inactivation is systematically discussed considering the main active substances, cell morphological changes, and activity of antioxidant enzymes.


Subject(s)
Escherichia coli , Staphylococcus aureus , Escherichia coli/radiation effects , Titanium/chemistry , Light , Anti-Bacterial Agents/chemistry
9.
Int J Biol Macromol ; 267(Pt 2): 131592, 2024 May.
Article in English | MEDLINE | ID: mdl-38621571

ABSTRACT

Nanocellulose is a kind of renewable natural polymer material with high specific surface area, high crystallinity, and strong mechanical properties. RC nanofibers (RCNFs) have attracted an increasing attention in various applications due to their high aspect ratio and good flexibility. Herein, a novel and facile strategy for RCNFs preparation with high-speed shear induced in urea solution through "bottom-up" approach was proposed in this work. Results indicated that the average diameter and yield of RCNF was approach to 136.67 nm and 53.3 %, respectively. Meanwhile, due to the regular orientation RC chains and arrangement micro-morphology, RCNFs exhibited high crystallinity, strong mechanical properties, stable thermal degradation performance, and excellent UV resistance. In this study, a novel regeneration process with high-speed shear induced was developed to produce RCNFs with excellent properties. This study paved a strategy for future low-energy production of nanofibers and high value-added conversion applications of agricultural waste.


Subject(s)
Cellulose , Nanofibers , Urea , Zea mays , Nanofibers/chemistry , Cellulose/chemistry , Zea mays/chemistry , Urea/chemistry , Solutions
10.
J Colloid Interface Sci ; 665: 163-171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520933

ABSTRACT

Structuring a stable artificial coating to mitigate dendrite growth and side reactions is an effective strategy for protecting the Zn metal anode. Herein, a Cu-Ag double-layer metal coating is constructed on the Zn anode (Zn@Cu-Ag) by simple and in-situ displacement reactions. The Cu layer enhances the bond between the Ag layer and Zn substrate by acting as an intermediary, preventing the Ag coating from detachment. Concurrently, the Ag layer serves to improve the corrosion resistance of Cu metal. During plating, the initial Cu sheets and Ag particles on the surface of Zn@Cu-Ag electrode gradually transform into a flat and smooth layer, resulting in the formation of AgZn, AgZn3, and (Ag, Cu)Zn4 alloys. Alloys play a multifunctional role in inhibiting dendrite growth and side reactions due to decreased resistance, low nucleation barrier, enhanced zincophilicity, and strong corrosion resistance. Consequently, the Zn@Cu-Ag symmetric cell exhibits continuous stable performance for 3750 h at 1 mA cm-2. Furthermore, the Zn@Cu-Ag||Zn3V3O8 full cell achieves an initial capacity of 293.4 mAh g-1 and realizes long cycling stability over 1200 cycles. This work provides new insight into the engineering of an efficient artificial interface for highly stable and reversible Zn metal anodes.

11.
Int J Biol Macromol ; 228: 89-98, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36565828

ABSTRACT

All-cellulose composite (ACC) was directly fabricated by the partial-dissolution welding of cellulose microfibers from agro-residual corn stalks treated with low-concentration ZnCl2 solvent (10-40 %). The solvent infiltrated deeply into nano/micro-scaled pores of cellulose fibers to facilitate the free migration of the disordered chains among the cellulose network while leaving the fiber core undissolved. Then, these disordered chains would entangle and regenerate to serve as a welded layer to bond the undissolved microfibril core in the solvent removal process. Such welding achieved exceptional mechanical (the tensile strength and Young's modulus of 49.9 MPa and 6.6 GPa, respectively), antibacterial (log removal value (LRV) of 4.8 and 3.0 for E. coli and S. aureus, respectively) and biodegradable properties of the multifunctional ACCs. It is worthwhile noting that the excellent antimicrobial effect is attributed to the sufficient contact of these microbes with ZnO NPs that were converted from the residual Zn2+ in ACCs. After five recycling processes, the elimination efficiency could still maintain a high LRV of 2.0-3.8. This high durability of ACC microbicidal activity was originated from strong twining interactions of cellulosic fibrils with in-situ synthesized ZnO NPs. This strategy was proven to be a facile and economical pathway to fabricate functional all-cellulose composites.


Subject(s)
Cellulose , Zinc Oxide , Cellulose/chemistry , Zea mays , Zinc Oxide/chemistry , Escherichia coli , Staphylococcus aureus , Biomass , Solubility , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Solvents
12.
Int J Biol Macromol ; 228: 548-558, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36423811

ABSTRACT

High-speed shear system is usually used for the dispersion improvement of slurry, nanomaterials preparation, and even two-dimensional materials production. However, there is barely study that focused on the regenerated cellulose (RC) which was coagulated with shear induced. In this work, a new type of all-cellulose air filter was fabricated through high-speed shear in aqueous regeneration system using parenchyma cellulose from corn stalk. The obtained RC were aggregated by ribbon-like fine cellulose and nanocellulose sheets. The study exhibited the micro-structure of RC displayed excellent unidirectional alignment and a relatively high crystallinity. All-cellulose air filter which was produced via RC presented excellent filtration efficiency (PM2.5 97.3 %, PM10.0 97.7 %) with slightly pressure drop (19 Pa). Therefore, this work provides a facile method to obtain a novel RC with nanocellulose particles used for air filtration, which gives an effective strategy application in the conversion of all-cellulose materials from agricultural waste.


Subject(s)
Air Filters , Nanostructures , Cellulose/chemistry , Nanostructures/chemistry , Water/chemistry , Zea mays/chemistry
13.
Int J Biol Macromol ; 253(Pt 3): 126693, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37703977

ABSTRACT

Cellulose hydrogels have gained attention in the field of wound healing due to their biodegradability, biocompatibility, and the capacity to sustain a humid environment that promotes healing. Conventional cellulose hydrogels were usually lacked responsiveness to changing wound conditions, and limited capacity for controlled release of active substances. The composite hydrogels with Berberine (BBR) loading were prepared from bamboo parenchymal cellulose and in situ crosslinking carboxylated-ß-cyclodextrin (BPCH-B) via dissolution. The inclusion of BBR enhanced the antibacterial properties of cellulose hydrogel while maintaining biocompatibility and drug delivery capabilities. The dual-responsive dressing was demonstrated to modulate drug release kinetics in accordance with the pH and temperature conditions prevailing within the wound site. Specifically, study exhibited a significant increase in drug release (over 70 %) under alkaline pH (7.6) and temperature (40 °C) conditions. Full-thickness wound healing experiments indicated that BPCH-B had better healing ability, and the wound healing area of BPCH-B treated was 80 % within 12 days, while the control group was only 50 %. This strategy for generating functional wound healing can be further control release of drug compounds for treatment of wounds, enabling development of practical wound care materials.


Subject(s)
Cyclodextrins , Hydrogels , Hydrogels/chemistry , Cellulose/chemistry , Temperature , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogen-Ion Concentration
14.
Environ Sci Pollut Res Int ; 30(25): 67290-67302, 2023 May.
Article in English | MEDLINE | ID: mdl-37103698

ABSTRACT

Nitrogen-rich organic polymer poly(chloride triazole) (PCTs) was synthesized by a one-step method as metal-halogen-free heterogeneous catalyst for the solvent-free CO2 cycloaddition. PCTs had abundant nitrogen sites and hydrogen bond donors, exhibited great activity for the cycloaddition of CO2 and epichlorohydrin, and achieved 99.6% yield of chloropropene carbonate under the conditions of 110 ℃, 6 h, and 0.5 MPa CO2. The activation of epoxides and CO2 by hydrogen bond donor and nitrogen sites was further explained by density functional theory (DFT) calculations. In summary, this study showed that nitrogen-rich organic polymer is a versatile platform for CO2 cycloaddition, and this paper provides a reference for the design of CO2 cycloaddition catalysts.


Subject(s)
Carbon Dioxide , Nitrogen , Polymers , Carbon Dioxide/chemistry , Catalysis , Cycloaddition Reaction , Epoxy Compounds/chemistry , Polymers/chemistry
15.
J Hazard Mater ; 436: 129258, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739777

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) as a broad-spectrum germicide in environmental remediation applications, is hindered by mild toxicity to organisms during water sterilization. To solve this dilemma, this work provided an eco-benign approach to utilize maize stalk with natural labyrinthine-channel configuration simultaneously acting as microbe trap and bactericide carrier to arouse bactericidal response of ZnO NPs. The preparation comprises in-situ growing ZnO NPs, accompanied by nanoscale delignification, leading to formed carbohydrate complex retaining the intricately porous structure of the stalk. Assembled by maize-stalk carbohydrate (MSC) composites with 9 short composites in serial, the elimination of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reached up 6.7 and 4.8 orders of magnitude, respectively. Labyrinth-framework MSC provided favorable sites for fusiform flower-like ZnO NPs to strongly adsorb (adsorption energy 5.5-11.7 eV) phosphoryl-involved biomacromolecules of bacterial envelops, causing generation of stable Zn-P and Zn-O(H), then cell incompleteness, cellular redox imbalance and DNA damage. Breakthrough analysis exposed the MSC/ZnO-filter possessing remarkable features of antibacterial exhaustion rate (~ 1.06 g/L) and capacity (~ 9.6 × 109 CFU/g) which were comparable with Ag-based composites. As evaluated by the logistic and Gompertz models, the filters effectively sterilized 0.97-10 L of environmental waters to meet the requirements of drinking water.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbohydrates , Decontamination , Escherichia coli , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Staphylococcus aureus , Water , Zea mays , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
16.
Pathogens ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35215191

ABSTRACT

Grape white rot caused by Coniella vitis is prevalent in almost all grapevines worldwide and results in a yield loss of 10-20% annually. Bacillus velezensis is a reputable plant growth-promoting bacterial. Strain GSBZ09 was isolated from grapevine cv. Red Globe (Vitis vinifera) and identified as B. velezensis according to morphological, physiological, biochemical characteristics and a multilocus gene sequence analysis (MLSA) based on six housekeeping genes (16S rRNA, gyrB, rpoD, atpD, rho and pgk). B. velezensis GSBZ09 was screened for antifungal activity against C. vitis under in vitro and in vivo conditions. GSBZ09 presented broad spectrum antifungal activity and produced many extracellular enzymes that remarkably inhibited the mycelial growth and spore germination of C. vitis. Furthermore, GSBZ09 had a high capacity for indole-3-acetic acid (IAA) production, siderophore production, and mineral phosphate solubilization. Pot experiments showed that the application of GSBZ09 significantly decreased the disease index of the grape white rot, directly promoted the growth of grapes, and upregulated defense-related enzymes. Overall, the features of B. velezensis GSBZ09 make it a potential strain for application as a biological control agent against C. vitis.

17.
Int J Biol Macromol ; 203: 1-9, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35063490

ABSTRACT

Wound healing is a challenged and complicated process due to the bacterial infections and frequent replacement in healing process. Hydrogels with properties of visibility and biocompatibility provided convenient and effective treatment during the wound healing process. Bamboo parenchyma cells have a great potential utilized on cellulosic materials fabrication for their high specific surface area and accessibility of chemical reagents. Herein, we present a simple and facile manufacture of transparent wound dressing from bamboo parenchymal cellulose via dissolution in DMAc/LiCl system. Rifampicin (RIF) was loaded on the hydrogel through immersion method. The result exhibited that the maximum drug loading efficiency of cellulose hydrogels was 82.13%. Hydrogel loaded RIF (HLR) showed that the inhibition zones against Gram-negative and Gram-positive bacteria were 19.11 mm and 36.93 mm, respectively. It was observed that the wound was healed more than 60% at 11th day in murine wound models. Meanwhile, RIF provided an exceptionally antibacterial property to hydrogels and promoted proliferation of epidermis cells in wound. As a result of observations, HLR demonstrating potential application in visual wound dressing materials for their excellent transparency, antibacterial effect, wound healing, and biocompatibility.


Subject(s)
Anti-Infective Agents , Hydrogels , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Cellulose/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Rifampin/pharmacology , Wound Healing
18.
Food Chem ; 367: 130677, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34343803

ABSTRACT

This study investigated the physicochemical properties and 3D structure of Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and its interaction with palmitoleic acid (POA) or oleic acid (OA) in macadamia oil. The 3D structure of MiAMP2 was constructed for the first time by ab initio modelling using the TrRosetta server. The results showed that MiAMP2 was highly hydrophilic and had seven disulfide bonds and higher α-helix and ß-sheet/turn contents. Molecular simulation showed that the hydrophobic pocket of MiAMP2 created a favourable environment for the binding of POA and OA. Free energy landscape and independent gradient model (IGM) analyses revealed that hydrogen bonds and van der Waals forces were the major driving forces stabilizing complexes formed by MiAMP2 and POA or OA. The present study provides a theoretical basis and new insight for the future development and utilization of macadamia nut protein in the food industry.


Subject(s)
Anti-Infective Agents , Macadamia , Fatty Acids, Monounsaturated , Oleic Acid
19.
J Food Biochem ; 46(8): e14168, 2022 08.
Article in English | MEDLINE | ID: mdl-35393673

ABSTRACT

This work aimed to identify novel angiotensin-converting-enzyme (ACE) inhibitory peptides from Macadamia integrifolia antimicrobial protein 2 (MiAMP2). The MiAMP2 protein was hydrolyzed through in silico digestion, and the generated peptides were screened for ACE inhibitory activity. The in silico enzyme digestion results revealed that 18 unreported peptides were obtained using AHTPDB and BIOPEP-UWM, and none were thought to be toxic based on absorption, distribution, metabolism, and excretion (ADMET) prediction. PGPR, RPLY, MNPQR, and AAPR were predicted to exhibit good biological activity. The molecular docking results revealed that the four peptides tightly bound to the active pocket of ACE via hydrogen bonds and hydrophobic interactions, among which RPLY and MNPQR bound to ACE more strongly. The in vitro assay results confirmed that RPLY and MNPQR peptides inhibited ACE via competitive manner. These results provide theoretical guidance for the development of novel foodborne antihypertensive peptides from Macadamia nut proteins. PRACTICAL APPLICATIONS: This study provides new insight on the inhibitory potential of Macadamia nut peptides against ACE, which may be further applied to the development of antihypertensive peptides in the medical industry.


Subject(s)
Anti-Infective Agents , Antihypertensive Agents , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensins , Anti-Infective Agents/pharmacology , Antihypertensive Agents/chemistry , Macadamia/metabolism , Molecular Docking Simulation , Peptides/chemistry , Peptides/pharmacology
20.
Carbohydr Polym ; 256: 117591, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33483077

ABSTRACT

In this study, we report a novel, facile, and green method that was used for creating a new all-cellulose composite (ACC) based on inorganic molten salt solvent. Three representatively native fibers from softwood (Pinus kesiya), hardwood (Eucalyptus globulus), and agricultural straw (Zea mays) were selected to verify the effect of the method. The welded sheets were thoroughly characterized and compared. Cellulose sheets from the pine exhibited excellent mechanical properties (σb 16.94 MPa) and thermal stability (Tmax 265 °C) after the welding process, while the corn stalk sheets displayed more robust and thermostable features than the eucalyptus. The welding technique using inorganic metal salt hydrate provides a promising and convenient route to obtain firm sheet-materials with micro- or nano-structures from nature fibers.


Subject(s)
Biomass , Cellulose/chemistry , Eucalyptus/chemistry , Pinus/chemistry , Wood/chemistry , Zea mays/chemistry , Chlorides/chemistry , Materials Testing , Metals/chemistry , Pressure , Solubility , Solvents , Stress, Mechanical , Temperature , Zinc Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL