Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
AJR Am J Roentgenol ; 222(2): e2330345, 2024 02.
Article in English | MEDLINE | ID: mdl-37991333

ABSTRACT

BACKGROUND. Although primary lung cancer is rare in children, chest CT is commonly performed to assess for lung metastases in children with cancer. Lung nodule computer-aided detection (CAD) systems have been designed and studied primarily using adult training data, and the efficacy of such systems when applied to pediatric patients is poorly understood. OBJECTIVE. The purpose of this study was to evaluate in children the diagnostic performance of traditional and deep learning CAD systems trained with adult data for the detection of lung nodules on chest CT scans and to compare the ability of such systems to generalize to children versus to other adults. METHODS. This retrospective study included pediatric and adult chest CT test sets. The pediatric test set comprised 59 CT scans in 59 patients (30 boys, 29 girls; mean age, 13.1 years; age range, 4-17 years), which were obtained from November 30, 2018, to August 31, 2020; lung nodules were annotated by fellowship-trained pediatric radiologists as the reference standard. The adult test set was the publicly available adult Lung Nodule Analysis (LUNA) 2016 subset 0, which contained 89 deidentified scans with previously annotated nodules. The test sets were processed through the traditional FlyerScan (github.com/rhardie1/FlyerScanCT) and deep learning Medical Open Network for Artificial Intelligence (MONAI; github.com/Project-MONAI/model-zoo/releases) lung nodule CAD systems, which had been trained on separate sets of CT scans in adults. Sensitivity and false-positive (FP) frequency were calculated for nodules measuring 3-30 mm; nonoverlapping 95% CIs indicated significant differences. RESULTS. Operating at two FPs per scan, on pediatric testing data FlyerScan and MONAI showed significantly lower detection sensitivities of 68.4% (197/288; 95% CI, 65.1-73.0%) and 53.1% (153/288; 95% CI, 46.7-58.4%), respectively, than on adult LUNA 2016 subset 0 testing data (83.9% [94/112; 95% CI, 79.1-88.0%] and 95.5% [107/112; 95% CI, 90.0-98.4%], respectively). Mean nodule size was smaller (p < .001) in the pediatric testing data (5.4 ± 3.1 [SD] mm) than in the adult LUNA 2016 subset 0 testing data (11.0 ± 6.2 mm). CONCLUSION. Adult-trained traditional and deep learning-based lung nodule CAD systems had significantly lower sensitivity for detection on pediatric data than on adult data at a matching FP frequency. The performance difference may relate to the smaller size of pediatric lung nodules. CLINICAL IMPACT. The results indicate a need for pediatric-specific lung nodule CAD systems trained on data specific to pediatric patients.


Subject(s)
Deep Learning , Lung Neoplasms , Solitary Pulmonary Nodule , Male , Adult , Female , Humans , Child , Child, Preschool , Adolescent , Artificial Intelligence , Retrospective Studies , Tomography, X-Ray Computed/methods , Lung Neoplasms/diagnostic imaging , Lung , Computers , Solitary Pulmonary Nodule/diagnostic imaging , Sensitivity and Specificity , Radiographic Image Interpretation, Computer-Assisted/methods
2.
Pediatr Radiol ; 54(7): 1059-1074, 2024 06.
Article in English | MEDLINE | ID: mdl-38850285

ABSTRACT

Connective tissue diseases are a heterogeneous group of autoimmune diseases that can affect a variety of organ systems. Lung parenchymal involvement is an important contributor to morbidity and mortality in children with connective tissue disease. Connective tissue disease-associated lung disease in children often manifests as one of several radiologic-pathologic patterns of disease, with certain patterns having a propensity to occur in association with certain connective tissue diseases. In this article, key clinical, histopathologic, and computed tomography (CT) features of typical patterns of connective tissue disease-associated lung disease in children are reviewed, with an emphasis on radiologic-pathologic correlation, to improve recognition of these patterns of lung disease at CT and to empower the pediatric radiologist to more fully contribute to the care of pediatric patients with these conditions.


Subject(s)
Connective Tissue Diseases , Lung Diseases , Tomography, X-Ray Computed , Humans , Connective Tissue Diseases/diagnostic imaging , Connective Tissue Diseases/complications , Child , Tomography, X-Ray Computed/methods , Lung Diseases/diagnostic imaging , Female , Male , Adolescent , Child, Preschool
SELECTION OF CITATIONS
SEARCH DETAIL