Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Nucleic Acids Res ; 51(9): 4191-4207, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37026479

ABSTRACT

Adenosine deaminase acting on RNA ADAR1 promotes A-to-I conversion in double-stranded and structured RNAs. ADAR1 has two isoforms transcribed from different promoters: cytoplasmic ADAR1p150 is interferon-inducible while ADAR1p110 is constitutively expressed and primarily localized in the nucleus. Mutations in ADAR1 cause Aicardi - Goutières syndrome (AGS), a severe autoinflammatory disease associated with aberrant IFN production. In mice, deletion of ADAR1 or the p150 isoform leads to embryonic lethality driven by overexpression of interferon-stimulated genes. This phenotype is rescued by deletion of the cytoplasmic dsRNA-sensor MDA5 indicating that the p150 isoform is indispensable and cannot be rescued by ADAR1p110. Nevertheless, editing sites uniquely targeted by ADAR1p150 remain elusive. Here, by transfection of ADAR1 isoforms into ADAR-less mouse cells we detect isoform-specific editing patterns. Using mutated ADAR variants, we test how intracellular localization and the presence of a Z-DNA binding domain-α affect editing preferences. These data show that ZBDα only minimally contributes to p150 editing-specificity while isoform-specific editing is primarily directed by the intracellular localization of ADAR1 isoforms. Our study is complemented by RIP-seq on human cells ectopically expressing tagged-ADAR1 isoforms. Both datasets reveal enrichment of intronic editing and binding by ADAR1p110 while ADAR1p150 preferentially binds and edits 3'UTRs.


Subject(s)
Adenosine Deaminase , Interferons , RNA Editing , RNA, Double-Stranded , Animals , Humans , Mice , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Interferons/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Double-Stranded/genetics
2.
PLoS Genet ; 18(8): e1010376, 2022 08.
Article in English | MEDLINE | ID: mdl-35994477

ABSTRACT

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Subject(s)
Histone Deacetylase 1 , Histone Deacetylase Inhibitors , Acetylation , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism
3.
Bioinformatics ; 37(15): 2126-2133, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-33538792

ABSTRACT

MOTIVATION: Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. METHOD: We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. RESULTS: We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. AVAILABILITYAND IMPLEMENTATION: https://github.com/ViennaRNA/RNAxplorer/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Plant Physiol ; 180(1): 305-322, 2019 05.
Article in English | MEDLINE | ID: mdl-30760640

ABSTRACT

Cis-Natural Antisense Transcripts (cis-NATs), which overlap protein coding genes and are transcribed from the opposite DNA strand, constitute an important group of noncoding RNAs. Whereas several examples of cis-NATs regulating the expression of their cognate sense gene are known, most cis-NATs function by altering the steady-state level or structure of mRNA via changes in transcription, mRNA stability, or splicing, and very few cases involve the regulation of sense mRNA translation. This study was designed to systematically search for cis-NATs influencing cognate sense mRNA translation in Arabidopsis (Arabidopsis thaliana). Establishment of a pipeline relying on sequencing of total polyA+ and polysomal RNA from Arabidopsis grown under various conditions (i.e. nutrient deprivation and phytohormone treatments) allowed the identification of 14 cis-NATs whose expression correlated either positively or negatively with cognate sense mRNA translation. With use of a combination of cis-NAT stable over-expression in transgenic plants and transient expression in protoplasts, the impact of cis-NAT expression on mRNA translation was confirmed for 4 out of 5 tested cis-NAT:sense mRNA pairs. These results expand the number of cis-NATs known to regulate cognate sense mRNA translation and provide a foundation for future studies of their mode of action. Moreover, this study highlights the role of this class of noncoding RNAs in translation regulation.


Subject(s)
Arabidopsis/genetics , Protein Biosynthesis , RNA, Antisense/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Plant , Reproducibility of Results , Sequence Analysis, RNA , Transcription Factors/genetics
5.
Methods ; 156: 32-39, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30385321

ABSTRACT

Chemical modifications of RNA nucleotides change their identity and characteristics and thus alter genetic and structural information encoded in the genomic DNA. tRNA and rRNA are probably the most heavily modified genes, and often depend on derivatization or isomerization of their nucleobases in order to correctly fold into their functional structures. Recent RNomics studies, however, report transcriptome wide RNA modification and suggest a more general regulation of structuredness of RNAs by this so called epitranscriptome. Modification seems to require specific substrate structures, which in turn are stabilized or destabilized and thus promote or inhibit refolding events of regulatory RNA structures. In this review, we revisit RNA modifications and the related structures from a computational point of view. We discuss known substrate structures, their properties such as sub-motifs as well as consequences of modifications on base pairing patterns and possible refolding events. Given that efficient RNA structure prediction methods for canonical base pairs have been established several decades ago, we review to what extend these methods allow the inclusion of modified nucleotides to model and study epitranscriptomic effects on RNA structures.


Subject(s)
Adenosine/metabolism , Inosine/metabolism , RNA Processing, Post-Transcriptional , Sequence Analysis, RNA/methods , Transcriptome , Animals , Base Pairing , Base Sequence , Humans , Methylation , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleic Acid Conformation , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
6.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
7.
Nature ; 489(7414): 101-8, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955620

ABSTRACT

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.


Subject(s)
DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics , Transcriptome/genetics , Alleles , Cell Line , DNA, Intergenic/genetics , Enhancer Elements, Genetic , Exons/genetics , Gene Expression Profiling , Genes/genetics , Genomics , Humans , Polyadenylation/genetics , Protein Isoforms/genetics , RNA/biosynthesis , RNA/genetics , RNA Editing/genetics , RNA Splicing/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, RNA
8.
Nucleic Acids Res ; 44(D1): D90-5, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26602692

ABSTRACT

AREsite2 represents an update for AREsite, an on-line resource for the investigation of AU-rich elements (ARE) in human and mouse mRNA 3'UTR sequences. The new updated and enhanced version allows detailed investigation of AU, GU and U-rich elements (ARE, GRE, URE) in the transcriptome of Homo sapiens, Mus musculus, Danio rerio, Caenorhabditis elegans and Drosophila melanogaster. It contains information on genomic location, genic context, RNA secondary structure context and conservation of annotated motifs. Improvements include annotation of motifs not only in 3'UTRs but in the whole gene body including introns, additional genomes, and locally stable secondary structures from genome wide scans. Furthermore, we include data from CLIP-Seq experiments in order to highlight motifs with validated protein interaction. Additionally, we provide a REST interface for experienced users to interact with the database in a semi-automated manner. The database is publicly available at: http://rna.tbi.univie.ac.at/AREsite.


Subject(s)
3' Untranslated Regions , Databases, Nucleic Acid , RNA/chemistry , Animals , Genomics , Humans , Mice , Molecular Sequence Annotation , Nucleic Acid Conformation , Nucleotide Motifs
9.
Mol Syst Biol ; 12(5): 868, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27178967

ABSTRACT

Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation-associated mRNA decay remains to be established. Using time-resolved high-resolution RNA binding analysis of the mRNA-destabilizing protein tristetraprolin (TTP), an inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non-destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP-controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA-stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co-regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome-wide atlas (http://ttp-atlas.univie.ac.at) of cis-acting elements controlling mRNA decay in inflammation.


Subject(s)
Lipopolysaccharides/pharmacology , Macrophages/immunology , RNA, Messenger/chemistry , Tristetraprolin/metabolism , Animals , Binding Sites , Cells, Cultured , Gene Expression Profiling/methods , Gene Expression Regulation , HEK293 Cells , Humans , Macrophages/drug effects , Mice , RNA Stability , RNA, Messenger/metabolism , Sequence Analysis, RNA
10.
Methods ; 103: 86-98, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27064083

ABSTRACT

RNA secondary structures have proven essential for understanding the regulatory functions performed by RNA such as microRNAs, bacterial small RNAs, or riboswitches. This success is in part due to the availability of efficient computational methods for predicting RNA secondary structures. Recent advances focus on dealing with the inherent uncertainty of prediction by considering the ensemble of possible structures rather than the single most stable one. Moreover, the advent of high-throughput structural probing has spurred the development of computational methods that incorporate such experimental data as auxiliary information.


Subject(s)
RNA/chemistry , Algorithms , Base Sequence , Computational Biology , Computer Simulation , Humans , Models, Molecular , RNA Folding , Sequence Analysis, RNA
11.
Genome Res ; 22(9): 1698-710, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22955982

ABSTRACT

Within the ENCODE Consortium, GENCODE aimed to accurately annotate all protein-coding genes, pseudogenes, and noncoding transcribed loci in the human genome through manual curation and computational methods. Annotated transcript structures were assessed, and less well-supported loci were systematically, experimentally validated. Predicted exon-exon junctions were evaluated by RT-PCR amplification followed by highly multiplexed sequencing readout, a method we called RT-PCR-seq. Seventy-nine percent of all assessed junctions are confirmed by this evaluation procedure, demonstrating the high quality of the GENCODE gene set. RT-PCR-seq was also efficient to screen gene models predicted using the Human Body Map (HBM) RNA-seq data. We validated 73% of these predictions, thus confirming 1168 novel genes, mostly noncoding, which will further complement the GENCODE annotation. Our novel experimental validation pipeline is extremely sensitive, far more than unbiased transcriptome profiling through RNA sequencing, which is becoming the norm. For example, exon-exon junctions unique to GENCODE annotated transcripts are five times more likely to be corroborated with our targeted approach than with extensive large human transcriptome profiling. Data sets such as the HBM and ENCODE RNA-seq data fail sampling of low-expressed transcripts. Our RT-PCR-seq targeted approach also has the advantage of identifying novel exons of known genes, as we discovered unannotated exons in ~11% of assessed introns. We thus estimate that at least 18% of known loci have yet-unannotated exons. Our work demonstrates that the cataloging of all of the genic elements encoded in the human genome will necessitate a coordinated effort between unbiased and targeted approaches, like RNA-seq and RT-PCR-seq.


Subject(s)
Gene Expression Profiling/methods , Genome, Human , Transcriptome , Computational Biology/methods , Exons , High-Throughput Nucleotide Sequencing , Humans , Introns , Molecular Sequence Annotation , Open Reading Frames , RNA Isoforms , RNA, Messenger/chemistry , RNA, Messenger/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
12.
Genome Res ; 22(9): 1775-89, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22955988

ABSTRACT

The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences-particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.


Subject(s)
Databases, Genetic , RNA, Long Noncoding/genetics , Alternative Splicing , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cluster Analysis , Evolution, Molecular , Exons , Gene Expression Profiling , Gene Expression Regulation , Histones/metabolism , Humans , Molecular Sequence Annotation , Open Reading Frames , Organ Specificity/genetics , Primates/genetics , RNA Processing, Post-Transcriptional , RNA Splice Sites , RNA, Messenger/genetics , Selection, Genetic , Transcription, Genetic
13.
Genome Res ; 22(9): 1760-74, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22955987

ABSTRACT

The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.


Subject(s)
Databases, Genetic , Genome, Human , Genomics/methods , Molecular Sequence Annotation , Animals , Computational Biology/methods , DNA, Complementary/chemistry , DNA, Complementary/genetics , Evolution, Molecular , Exons , Genetic Loci , Humans , Internet , Models, Molecular , Open Reading Frames , Pseudogenes , Quality Control , RNA Splice Sites , RNA, Long Noncoding , Reproducibility of Results , Untranslated Regions
14.
Nucleic Acids Res ; 38(10): e113, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20150415

ABSTRACT

Up to 450,000 non-coding RNAs (ncRNAs) have been predicted to be transcribed from the human genome. However, it still has to be elucidated which of these transcripts represent functional ncRNAs. Since all functional ncRNAs in Eukarya form ribonucleo-protein particles (RNPs), we generated specialized cDNA libraries from size-fractionated RNPs and validated the presence of selected ncRNAs within RNPs by glycerol gradient centrifugation. As a proof of concept, we applied the RNP method to human Hela cells or total mouse brain, and subjected cDNA libraries, generated from the two model systems, to deep-sequencing. Bioinformatical analysis of cDNA sequences revealed several hundred ncRNP candidates. Thereby, ncRNAs candidates were mainly located in intergenic as well as intronic regions of the genome, with a significant overrepresentation of intron-derived ncRNA sequences. Additionally, a number of ncRNAs mapped to repetitive sequences. Thus, our RNP approach provides an efficient way to identify new functional small ncRNA candidates, involved in RNP formation.


Subject(s)
Gene Library , RNA, Untranslated/metabolism , Ribonucleoproteins/chemistry , Animals , Base Sequence , Brain Chemistry , Conserved Sequence , Exons , Gene Expression Profiling , HeLa Cells , Humans , Introns , Mice , RNA, Untranslated/classification , RNA, Untranslated/isolation & purification , Repetitive Sequences, Nucleic Acid , Ribonucleoproteins/isolation & purification
15.
RNA Biol ; 8(6): 938-46, 2011.
Article in English | MEDLINE | ID: mdl-21955586

ABSTRACT

The overwhelming majority of small nucleolar RNAs (snoRNAs) fall into two clearly defined classes characterized by distinctive secondary structures and sequence motifs. A small group of diverse ncRNAs, however, shares the hallmarks of one or both classes of snoRNAs but differs substantially from the norm in some respects. Here, we compile the available information on these exceptional cases, conduct a thorough homology search throughout the available metazoan genomes, provide improved and expanded alignments, and investigate the evolutionary histories of these ncRNA families as well as their mutual relationships.


Subject(s)
Coiled Bodies/metabolism , Nucleic Acid Conformation , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , Animals , Base Sequence , Genome/genetics , Humans , Molecular Sequence Data , Phylogeny , RNA, Small Nucleolar/classification , Sequence Alignment/methods , Sequence Homology, Nucleic Acid
16.
Nucleic Acids Res ; 37(5): 1602-15, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19151082

ABSTRACT

A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs--in particular rRNAs, tRNAs and some snRNAs--we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome.


Subject(s)
Genome , Placozoa/genetics , RNA, Untranslated/genetics , Animals , Base Sequence , Endoribonucleases/chemistry , MicroRNAs/chemistry , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Ribosomal/genetics , RNA, Small Cytoplasmic/chemistry , RNA, Small Nuclear/chemistry , RNA, Small Nuclear/genetics , RNA, Small Nucleolar/chemistry , RNA, Small Nucleolar/genetics , RNA, Transfer/genetics , Ribonuclease P/genetics , Signal Recognition Particle/chemistry , Software
17.
Proc Natl Acad Sci U S A ; 105(39): 14928-33, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18809929

ABSTRACT

Evolutionary change in gene regulation can result from changes in cis-regulatory elements, leading to differences in the temporal and spatial expression of genes or in the coding region of transcription factors leading to novel functions or both. Although there is a growing body of evidence supporting the importance of cis-regulatory evolution, examples of protein-mediated evolution of novel developmental pathways have not been demonstrated. Here, we investigate the evolution of prolactin (PRL) expression in endometrial cells, which is essential for placentation/pregnancy in eutherian mammals and is a direct regulatory target of the transcription factor HoxA-11. Here, we show that (i) endometrial PRL expression is a derived feature of placental mammals, (ii) the PRL regulatory gene HoxA-11 experienced a period of strong positive selection in the stem-lineage of eutherian mammals, and (iii) only HoxA-11 proteins from placental mammals, including the reconstructed ancestral eutherian gene, are able to up-regulate PRL from the promoter used in endometrial cells. In contrast, HoxA-11 from the reconstructed therian ancestor, opossum, platypus, and chicken are unable to up-regulate PRL expression. These results demonstrate that the evolution of novel gene expression domains is not only mediated by the evolution of cis-regulatory elements but can also require evolutionary changes of transcription factor proteins themselves.


Subject(s)
Endometrium/metabolism , Evolution, Molecular , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Pregnancy/genetics , Prolactin/genetics , Amino Acid Sequence , Animals , Chickens/genetics , Chickens/metabolism , Elephants/genetics , Elephants/metabolism , Female , Homeodomain Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Opossums/genetics , Opossums/metabolism , Placenta/metabolism , Promoter Regions, Genetic , Selection, Genetic
18.
J Mol Evol ; 70(4): 346-58, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20349053

ABSTRACT

Stem-bulge RNAs (sbRNAs) are a group of small, functionally yet uncharacterized noncoding RNAs first described in C. elegans, with a few homologous sequences postulated in C. briggsae. In this study, we report on a comprehensive survey of this ncRNA family in the phylum Nematoda. Employing homology search strategies based on both sequence and secondary structure models and a computational promoter screen we identified a total of 240 new sbRNA homologs. For the majority of these loci we identified both promoter regions and transcription termination signals characteristic for pol-III transcripts. Sequence and structure comparison with known RNA families revealed that sbRNAs are homologs of vertebrate Y RNAs. Most of the sbRNAs show the characteristic Ro protein binding motif, and contain a region highly similar to a functionally required motif for DNA replication previously thought to be unique to vertebrate Y RNAs. The single Y RNA that was previously described in C. elegans, however, does not show this motif, and in general bears the hallmarks of a highly derived family member.


Subject(s)
Nematoda/genetics , RNA, Untranslated/genetics , Sequence Homology, Nucleic Acid , Animals , Base Sequence , Chromosomes , Genes, Helminth , Humans , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Promoter Regions, Genetic , Ribonucleoproteins , Synteny , Vertebrates
19.
Genes (Basel) ; 9(8)2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30071678

ABSTRACT

In this work, we present a computational screen conducted for functional RNA structures, resulting in over 100,000 conserved RNA structure elements found in alignments of mouse (mm10) against 59 other vertebrates. We explicitly included masked repeat regions to explore the potential of transposable elements and low-complexity regions to give rise to regulatory RNA elements. In our analysis pipeline, we implemented a four-step procedure: (i) we screened genome-wide alignments for potential structure elements using RNAz-2, (ii) realigned and refined candidate loci with LocARNA-P, (iii) scored candidates again with RNAz-2 in structure alignment mode, and (iv) searched for additional homologous loci in mouse genome that were not covered by genome alignments. The 3'-untranslated regions (3'-UTRs) of protein-coding genes and small noncoding RNAs are enriched for structures, while coding sequences are depleted. Repeat-associated loci make up about 95% of the homologous loci identified and are, as expected, predominantly found in intronic and intergenic regions. Nevertheless, we report the structure elements enriched in specific genome elements, such as 3'-UTRs and long noncoding RNAs (lncRNAs). We provide full access to our results via a custom UCSC genome browser trackhub freely available on our website (http://rna.tbi.univie.ac.at/trackhubs/#RNAz).

20.
BMC Genomics ; 7: 25, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16480513

ABSTRACT

BACKGROUND: MicroRNAs have been identified as crucial regulators in both animals and plants. Here we report on a comprehensive comparative study of all known miRNA families in animals. We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursors whose expression has been verified in at least one species. Using this uniform data basis we analyze their evolutionary history in terms of individual gene phylogenies and in terms of preservation of genomic nearness across species. This allows us to reliably identify microRNA clusters that are derived from a common transcript. RESULTS: We identify three episodes of microRNA innovation that correspond to major developmental innovations: A class of about 20 miRNAs is common to protostomes and deuterostomes and might be related to the advent of bilaterians. A second large wave of innovations maps to the branch leading to the vertebrates. The third significant outburst of miRNA innovation coincides with placental (eutherian) mammals. In addition, we observe the expected expansion of the microRNA inventory due to genome duplications in early vertebrates and in an ancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local (tandem) duplications leading to the formation of about a dozen ancient microRNA clusters. CONCLUSION: Our results suggest that microRNA innovation is an ongoing process. Major expansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates, and (placental) mammals.


Subject(s)
Evolution, Molecular , MicroRNAs/classification , MicroRNAs/genetics , Animals , Base Sequence , Cluster Analysis , DNA/chemistry , Gene Duplication , Humans , Mammals/genetics , MicroRNAs/chemistry , Molecular Sequence Data , Multigene Family , Phylogeny , Repetitive Sequences, Nucleic Acid , Sequence Homology, Nucleic Acid , Tubulin/genetics , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL