Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Acta Pharm Sin B ; 14(1): 207-222, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261825

ABSTRACT

Modulating Tankyrases (TNKS), interactions with USP25 to promote TNKS degradation, rather than inhibiting their enzymatic activities, is emerging as an alternative/specific approach to inhibit the Wnt/ß-catenin pathway. Here, we identified UAT-B, a novel neoantimycin analog isolated from Streptomyces conglobatus, as a small-molecule inhibitor of TNKS-USP25 protein-protein interaction (PPI) to overcome multi-drug resistance in colorectal cancer (CRC). The disruption of TNKS-USP25 complex formation by UAT-B led to a significant decrease in TNKS levels, triggering cell apoptosis through modulation of the Wnt/ß-catenin pathway. Importantly, UAT-B successfully inhibited the CRC cells growth that harbored high TNKS levels, as demonstrated in various in vitro and in vivo studies utilizing cell line-based and patient-derived xenografts, as well as APCmin/+ spontaneous CRC models. Collectively, these findings suggest that targeting the TNKS-USP25 PPI using a small-molecule inhibitor represents a compelling therapeutic strategy for CRC treatment, and UAT-B emerges as a promising candidate for further preclinical and clinical investigations.

2.
Cancer Res ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900939

ABSTRACT

Analysis of extracellular vesicles (EVs) is a promising noninvasive liquid biopsy approach for breast cancer (BC) detection, prognosis, and therapeutic monitoring. A comprehensive understanding of the characteristics and proteomic composition of BC-specific EVs from human samples is required to realize the potential of this strategy. In this study, we applied a mass spectrometry-based, data-independent acquisition (DIA) proteomic approach to characterize human serum EVs derived from patients with BC (n = 126) and healthy donors (HDs, n = 70) in a discovery cohort and validated the findings in five independent cohorts. Examination of the EV proteomes enabled construction of specific EV protein classifiers for diagnosing BC and distinguishing patients with metastatic disease. Of note, TALDO1 was found to be an EV biomarker of distant metastasis of BC. In vitro and in vivo analysis confirmed the role of TALDO1 in stimulating BC invasion and metastasis. Finally, high-throughput molecular docking and virtual screening of a library consisting of 271,380 small molecules identified a potent TALDO1 allosteric inhibitor, AO-022, which could inhibit BC migration in vitro and tumor progression in vivo. Together, this work elucidates the proteomic alterations in the serum EVs of BC patients to guide development of improved diagnosis, monitoring, and treatment strategies.

SELECTION OF CITATIONS
SEARCH DETAIL