Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1072-1082, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528677

ABSTRACT

This study aimed to investigate the effects of fermented tofu processing wastewater (FTPW) on the growth performance and meat quality of Xianghuang broilers. A total of 160 six-week-old Xianghuang broilers were randomly assigned to control or FTPW groups with eight replicate pens of 10 birds each pen. Broilers received the same corn-soybean diet but different water. Broilers received ordinary water in the control group and 40% (volume: volume) FTPW (the solution has been filtered with four layers of sieve, containing Bacillus 1.52 × 10-7 CFU/mL) in FTPW group. The experiment lasted for 30 days. Results indicated that growth performance was not affected by treatment (p > 0.05). The value of pH45 min and a48 h increased and drip loss72 h and toughness decreased in breast muscle when broilers received FTPW solution compared with the control group (p < 0.05). The pH45 min, a45 min, a48 h value and crude fat concentration of thigh muscle were higher in FTPW group than that in control group (p < 0.05). Compared with control group, fibre area decreased but fibre density increased in thigh muscle when Xianghuang chickens supplemented with FTPW solution (p < 0.05). Supplementation of FTPW solution in drinking water significantly decreased malondialdehyde content in the breast muscle of Xianghuang chickens (p < 0.05). Gene expressions such as carnitine palmitoyltransferase 1A (CPT1) and glycogen synthase of breast muscle were downregulated in experimental group when compared with control group. In conclusion, FTPW supplementation in drinking water could improve meat quality of Xianghuang broilers by regulating pH value, redness and fibre morphology.


Subject(s)
Animal Feed , Chickens , Diet , Fermentation , Meat , Wastewater , Animals , Meat/standards , Animal Feed/analysis , Diet/veterinary , Wastewater/chemistry , Soy Foods , Animal Nutritional Physiological Phenomena , Food Handling
2.
Physiol Plant ; 175(6): e14104, 2023.
Article in English | MEDLINE | ID: mdl-38148235

ABSTRACT

Glechoma longituba has been frequently used in treating urolithiasis and cholelithiasis due to the presence of flavonoids, which are its major bioactive constituents. However, research on the molecular background of flavonoid biosynthesis in G. longituba is limited. In this study, we used single-molecule real-time combined with next-generation sequencing technologies to construct the complete transcriptome of G. longituba. We identified 404,648 non-redundant transcripts, including 249,697 coding sequences, 197,811 simple sequence repeats, 174,846 long noncoding RNA, and 176,554 coding RNA. Moreover, we functionally annotated 346,218 isoforms (85.56%) and identified 86,528 differentially expressed genes. We also identified 55 non-redundant full-length isoforms related to the flavonoid biosynthetic pathway. Pearson correlation analysis revealed that the expression levels of some key genes of the flavonoid biosynthesis pathway were significantly positively correlated with the flavonoid metabolites. Furthermore, we performed bioinformatics analysis (sequence and structural) of isoform_47029 (encoding flavanone 3-hydroxylase) and isoform_53692 (encoding flavonol synthase) to evaluate their potential biological functions. Finally, we validated gene expression levels of 12 flavonoid-related key enzyme genes using quantitative real-time PCR. Overall, this study provides full-length transcriptome information on G. longituba for the first time and valuable molecular resources for further research on the medicinal properties of this plant.


Subject(s)
Lamiaceae , Transcriptome , Transcriptome/genetics , Flavonoids/genetics , Lamiaceae/genetics , Protein Isoforms , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL