Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Isr Med Assoc J ; 24(9): 602-605, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36168180

ABSTRACT

BACKGROUND: The Israeli Defense Forces-Medical Corps (IDF-MC) focuses on reducing preventable death by improving prehospital trauma care. High quality documentation of care can serve casualty care and to improve future care. Currently, paper casualty cards are used for documentation. Incomplete data acquisition and inadequate data handover are common. To resolve these deficits, the IDF-MC launched the BladeShield 101 project. OBJECTIVES: To assess the quality of casualty care data acquired by comparing standard paper casualty cards with the BladeShield 101. METHODS: The BladeShield 101 system consists of three components: a patient unit that records vital signs and medical care provided, a medical sensor that transmits to the patient unit, and a ruggedized mobile device that allows providers to access and document information. We compared all trauma registries of casualties treated between September 2019 and June 2020. RESULTS: The system was applied during the study period on 24 patients. All data were transferred to the military trauma registry within one day, compared to 72% (141/194) with a paper casualty card (P < 0.01). Information regarding treatment time was available in 100% vs. 43% (P < 0.01) of cases and 98% vs. 67% (P < 0.01) of treatments provided were documented comparing BladeShield 101 with paper cards, respectively. CONCLUSIONS: Using an autonomous system to record, view, deliver, and store casualty information may resolve most current information flow deficits. This solution will ultimately significantly improve individual patient care and systematic learning and development processes.


Subject(s)
Emergency Medical Services , Military Medicine , Military Personnel , Wearable Electronic Devices , Wounds and Injuries , Documentation , Humans , Registries , Wounds and Injuries/therapy
2.
Sci Total Environ ; 856(Pt 2): 159051, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36181819

ABSTRACT

Quantifying coral reef biodiversity is challenging for cryptofauna and organisms in early life stages. We demonstrate the utility of eDNA metabarcoding as a tool for comprehensively evaluating invertebrate communities on complex 3D structures for reef reformation, and the role these structures play in provisioning habitat for organisms. 3D design and printing were used to create 18 complex tiles, which were used to form artificial reef structures. eDNA was collected from scraping tile surfaces for organismal biomass and from seawater samples around the artificial reefs in the Gulf of Eilat/Aqaba, Red Sea. Metabarcoding targeted the mitochondrial COI gene with specific primers for marine biodiversity. We provide the first eDNA biodiversity baseline for the Gulf of Eilat/Aqaba, capturing extensive information on species abundance, richness, and diversity. Tile tops had higher phylogenetic diversity and richness, despite a higher abundance of organisms on tile bottoms, highlighting the detection of cryptic organisms with eDNA. We recommend eDNA metabarcoding for reef restoration initiatives, especially for complex marine structures, to improve success and evaluation of biodiversity.


Subject(s)
Coral Reefs , DNA, Environmental , Phylogeny , Biodiversity , Ecosystem , Environmental Monitoring
3.
Sci Total Environ ; 830: 154749, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35339542

ABSTRACT

The rapid decline of vulnerable coral reefs has increased the necessity of exploring interdisciplinary methods for reef restoration. Examining how to upgrade these tools may uncover options to better support or increase biodiversity of coral reefs. As many of the issues facing reef restoration today deal with the scalability and effectiveness of restoration efforts, there is an urgency to invest in technology that can help reach ecosystem-scale. Here, we provide an overview on the evolution to current state of artificial reefs as a reef reformation tool and discuss a blueprint with which to guide the next generation of biomimetic artificial habitats for ecosystem support. Currently, existing artificial structures have difficulty replicating the 3D complexity of coral habitats and scaling them to larger areas can be problematic in terms of production and design. We introduce a novel customizable 3D interface for producing scalable, biomimetic artificial structures, utilizing real data collected from coral ecosystems. This interface employs 3D technologies, 3D imaging and 3D printing, to extract core reef characteristics, which can be translated and digitized into a 3D printed artificial reef. The advantages of 3D printing lie in providing customized tools by which to integrate the vital details of natural reefs, such as rugosity and complexity, into a sustainable manufacturing process. This methodology can offer economic solutions for developing both small and large-scale biomimetic structures for a variety of restoration situations, that closely resemble the coral reefs they intend to support.


Subject(s)
Anthozoa , Coral Reefs , Animals , Biodiversity , Biomimetics , Ecosystem
4.
Saf Sci ; 136: 105162, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33519093

ABSTRACT

The COVID-19 pandemic has highlighted the difficulties of countries and healthcare systems in preparing for major emergency situations. In the first month of the pandemic there was a global shortage of personal protective equipment (PPE), thereby causing a rise in infection cases and deaths among healthcare workers (HCWs) in some countries. Moreover, the PPE used in hospitals today is not designed for prolonged use, and causes problems such as headaches and vision difficulties. To address these problems, a case study of an active PPE system for HCWs that is based on 3D printing and the use of ready-made parts is presented here. This case study demonstrates a new approach toward the design and manufacturing of PPE in emergency situations that relies on rapid development and domestic manufacturing of products through 3D printing technologies. The system was developed during the first months of the pandemic under restrictive quarantine conditions, and was fabricated and then tested by HCWs at several hospitals. Apart from sterilization difficulties, the system received positive feedback in user testing.

SELECTION OF CITATIONS
SEARCH DETAIL