ABSTRACT
Legionnaires disease is a serious pneumonia caused by Legionella bacteria. During November 2022-June 2024, CDC was notified of 12 cases of Legionnaires disease among travelers on two cruise ships; eight on cruise ship A and four on cruise ship B. CDC, in collaboration with the cruise lines, initiated investigations to ascertain the potential sources of on-board exposure after notification of the second potentially associated case for each ship. Epidemiologic data collected from patient interviews and environmental assessment and sampling results identified private hot tubs on selected cabin balconies as the most likely exposure source. To minimize Legionella growth, both cruise lines modified the operation and maintenance of these devices by removing the heating elements, draining water between uses, and increasing the frequency of hyperchlorination and cleaning. Hot tubs offer favorable conditions for Legionella growth and transmission when maintained and operated inadequately, regardless of location. Private hot tubs on cruise ships are not subject to the same maintenance requirements as are public hot tubs in common areas. Given the range of hot tub-type devices offered as amenities across the cruise industry, to reduce risk for Legionella growth and transmission, it is important for cruise ship water management program staff members to inventory and assess private balcony hot tubs and adapt public hot tub maintenance and operations protocols for use on private outdoor hot tubs.
Subject(s)
Disease Outbreaks , Legionnaires' Disease , Ships , Humans , Legionnaires' Disease/epidemiology , Middle Aged , Male , Adult , Female , Water Microbiology , Aged , Young AdultABSTRACT
BACKGROUND: Cruise travel contributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission when there were relatively few cases in the United States. By 14 March 2020, the Centers for Disease Control and Prevention (CDC) issued a No Sail Order suspending US cruise operations; the last US passenger ship docked on 16 April. METHODS: We analyzed SARS-CoV-2 outbreaks on cruises in US waters or carrying US citizens and used regression models to compare voyage characteristics. We used compartmental models to simulate the potential impact of 4 interventions (screening for coronavirus disease 2019 (COVID-19) symptoms; viral testing on 2 days and isolation of positive persons; reduction of passengers by 40%, crew by 20%, and reducing port visits to 1) for 7-day and 14-day voyages. RESULTS: During 19 January to 16 April 2020, 89 voyages on 70 ships had known SARS-CoV-2 outbreaks; 16 ships had recurrent outbreaks. There were 1669 reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infections and 29 confirmed deaths. Longer voyages were associated with more cases (adjusted incidence rate ratio, 1.10, 95% confidence interval [CI]: 1.03-1.17, Pâ <â .003). Mathematical models showed that 7-day voyages had about 70% fewer cases than 14-day voyages. On 7-day voyages, the most effective interventions were reducing the number of individuals onboard (43.3% reduction in total infections) and testing passengers and crew (42% reduction in total infections). All four interventions reduced transmission by 80.1%, but no single intervention or combination eliminated transmission. Results were similar for 14-day voyages. CONCLUSIONS: SARS-CoV-2 outbreaks on cruises were common during January-April 2020. Despite all interventions modeled, cruise travel still poses a significant SARS-CoV-2 transmission risk.
Subject(s)
COVID-19 , Disease Outbreaks , Humans , Public Health , SARS-CoV-2 , Ships , Travel , United States/epidemiologyABSTRACT
An estimated 30 million passengers are transported on 272 cruise ships worldwide each year* (1). Cruise ships bring diverse populations into proximity for many days, facilitating transmission of respiratory illness (2). SARS-CoV-2, the virus that causes coronavirus disease (COVID-19) was first identified in Wuhan, China, in December 2019 and has since spread worldwide to at least 187 countries and territories. Widespread COVID-19 transmission on cruise ships has been reported as well (3). Passengers on certain cruise ship voyages might be aged ≥65 years, which places them at greater risk for severe consequences of SARS-CoV-2 infection (4). During February-March 2020, COVID-19 outbreaks associated with three cruise ship voyages have caused more than 800 laboratory-confirmed cases among passengers and crew, including 10 deaths. Transmission occurred across multiple voyages of several ships. This report describes public health responses to COVID-19 outbreaks on these ships. COVID-19 on cruise ships poses a risk for rapid spread of disease, causing outbreaks in a vulnerable population, and aggressive efforts are required to contain spread. All persons should defer all cruise travel worldwide during the COVID-19 pandemic.
Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Global Health/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Public Health Practice , Ships , Travel-Related Illness , Adult , Aged , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Humans , Male , Middle Aged , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Risk Factors , SARS-CoV-2 , United States/epidemiologyABSTRACT
On June 2, 2015, CDC was notified that a male airline passenger, aged 41 years, with a fever of 105.4°F, headache, nausea, photophobia, diarrhea, and vomiting, which began approximately 3 hours after departure, was arriving to San Francisco, California, on a flight from Frankfurt, Germany. His symptoms reportedly started with neck stiffness 1 day earlier. Upon arrival, the patient was immediately transported to a local hospital, where he was in septic shock, which was followed by multisystem organ failure. Cerebrospinal fluid, obtained approximately 12 hours after initiation of treatment, was Gram stain- and culture-negative. Blood cultures, which were drawn before antibiotic treatment, were positive for Neisseria meningitides of indeterminate serogroup. A review of the patient's medical records revealed a history of paroxysmal nocturnal hemoglobinuria and current biweekly eculizumab (Soliris) therapy.