Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Appl Microbiol Biotechnol ; 107(11): 3429-3441, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37093307

ABSTRACT

Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.


Subject(s)
COVID-19 , ISCOMs , Humans , Mice , Animals , COVID-19 Vaccines , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , SARS-CoV-2 , Antigen-Antibody Complex , Pandemics/prevention & control , HEK293 Cells , Antibodies, Viral , Antibodies, Neutralizing , Adjuvants, Immunologic , Aluminum Hydroxide
2.
Appl Microbiol Biotechnol ; 106(23): 7933-7948, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329132

ABSTRACT

Serology assays are essential tools to mitigate the effect of COVID-19, help to identify previous SARS-CoV-2 infections or vaccination, and provide data for surveillance and epidemiologic studies. In this study, we report the production and purification process of the receptor-binding domain (RBD) of SARS-CoV-2 in HEK293 cells, which allowed the design, optimization, and validation of an indirect ELISA (iELISA) for the detection of human anti-RBD antibodies. To find the optimal conditions of this iELISA, a multivariate strategy was performed throughout design of experiments (DoE) and response surface methodology (RSM), one of the main tools of quality by design (QbD) approach. The adoption of this strategy helped to reduce the time and cost during the method development stage and to define an optimum condition within the analyzed design region. The assay was then validated, exhibiting a sensitivity of 94.24 (86.01-98.42%; 95% CI) and a specificity of 95.96% (89.98-98.89%; 95% CI). Besides, the degree of agreement between quality results assessed using kappa's value was 0.92. Hence, this iELISA represents a high-throughput technique, simple to perform, reliable, and feasible to be scaled up to satisfy the current demands. Since RBD is proposed as the coating antigen, the intended use of this iELISA is not only the detection of previous exposure to the virus, but also the possibility of detecting protective immunity. KEY POINTS: • RBD was produced in 1-L bioreactor and highly purified. • An iELISA assay was optimized applying QbD concepts. • The validation procedure demonstrated that this iELISA is accurate and precise.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , HEK293 Cells , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Immunoglobulin G , Spike Glycoprotein, Coronavirus
3.
Adv Exp Med Biol ; 1148: 25-54, 2019.
Article in English | MEDLINE | ID: mdl-31482493

ABSTRACT

Since ERT for several LSDs treatment has emerged at the beginning of the 1980s with Orphan Drug approval, patients' expectancy and life quality have been improved. Most LSDs treatment are based on the replaced of mutated or deficient protein with the natural or recombinant protein.One of the main ERT drawback is the high drug prices. Therefore, different strategies trying to optimize the global ERT biotherapeutic production have been proposed. LVs, a gene delivery tool, can be proposed as an alternative method to generate stable cell lines in manufacturing of recombinant proteins. Since LVs have been used in human gene therapy, clinical trials, safety testing assays and procedures have been developed. Moreover, one of the main advantages of LVs strategy to obtain manufacturing cell line is the short period required as well as the high protein levels achieved.In this chapter, we will focus on LVs as a recombinant protein production platform and we will present a case study that employs LVs to express in a manufacturing cell line, alpha-Galactosidase A (rhαGAL), which is used as ERT for Fabry disease treatment.


Subject(s)
Enzymes/biosynthesis , Gene Transfer Techniques , Lentivirus , Enzymes/pharmacology , Fabry Disease/therapy , Genetic Vectors , Humans , alpha-Galactosidase/biosynthesis , alpha-Galactosidase/pharmacology
4.
Biotechnol J ; 19(6): e2400260, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900054

ABSTRACT

Follicle-stimulating hormone (FSH) is an important protein used for bovine ovarian hyperstimulation in multiple ovulation and embryo transfer technology (MOET). Several attempts to produce bovine FSH (bFSH) in recombinant systems have been reported, nonetheless, up to date, the most commonly used products are partially purified preparations derived from porcine or ovine (pFSH or oFSH) pituitaries. Here we describe the development of a biotechnology process to produce a novel, hyperglycosylated, long-acting recombinant bFSH (LA-rbFSH) by fusing copies of a highly O-glycosylated peptide. LA-rbFSH and a nonmodified version (rbFSH) were produced in suspension CHO cell cultures and purified by IMAC with high purity levels (>99%). LA-rbFSH presented a higher glycosylation degree and sialic acid content than rbFSH. It also demonstrated a notable improvement in pharmacokinetic properties after administration to rats, including a higher concentration in plasma and a significant (seven-fold) reduction in apparent clearance (CLapp). In addition, the in vivo specific bioactivity of LA-rbFSH in rats was 2.4-fold higher compared to rbFSH. These results postulate this new molecule as an attractive substitute for commercially available porcine pituitary-derived products.


Subject(s)
Cricetulus , Follicle Stimulating Hormone , Recombinant Proteins , Animals , Follicle Stimulating Hormone/metabolism , CHO Cells , Glycosylation , Cattle , Rats , Female , Biotechnology/methods
5.
J Pharm Sci ; 112(11): 2756-2765, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37422284

ABSTRACT

Protein formulation and drug characterization are one of the most difficult and time-consuming tasks because of the complexity of biotherapeutic proteins. Hence, maintaining a protein drug in its active state typically requires preventing changes in its physical and chemical properties. Quality by Design (QbD) is a systematic approach emphasizing product and process understanding. Design of Experiments (DoE) is one of the most important QbD tools, allowing the possibility to modify the formulation attributes within a defined design space. Here, we report the validation of a RP-HPLC assay for recombinant equine chorionic gonadotropin (reCG) that demonstrated a high correlation with the in vivo potency biological assay. QbD concepts were then applied to obtain an optimized liquid formulation of reCG with a predefined quality product profile. The developed strategy demonstrates the importance of applying multivariable strategies as DoE to simplify formulation stages, improving the quality of the obtained results. Moreover, it is important to highlight that this is the first time that a liquid formulation is reported for an eCG molecule, since, up to now, the only eCG products available in the market for veterinary use consisted in partially purified preparations of pregnant mare serum gonadotropin (PMSG) presented as a lyophilized product.

6.
Protein J ; 42(1): 24-36, 2023 02.
Article in English | MEDLINE | ID: mdl-36652139

ABSTRACT

Equine chorionic gonadotropin (eCG) is a glycoprotein hormone widely used in timed artificial ovulation (TAI) and superovulation protocols to improve the reproductive performance in livestock. Until recently, the only eCG products available in the market for veterinary use consisted in partially purified preparations of pregnant mare serum gonadotropin (PMSG). Here, a bioactive recombinant eCG (reCG) produced in suspension CHO-K1 cells was purified employing different chromatographic methods (hydrophobic interaction chromatography and reverse-phase (RP)-HPLC) and compared with a RP-HPLC-purified PMSG. To gain insight into the structural and functional characteristics of reCG, a bioinformatics analysis was performed. An exhaustive characterization comprising the determination of the purity degree, aggregates and nicked forms through SDS-PAGE, RP-HPLC and SEC-HPLC was performed. Higher order structures were studied by fluorescence spectroscopy and SEC-HPLC. Isoforms profile were analyzed by isoelectric focusing. Glycosylation analysis was performed through pulsed amperometric detection and PNGase F treatment following SDS-PAGE and weak anion exchange-HPLC. Slight differences between the purified recombinant hormones were found. However, recombinant molecules and PMSG exhibited variations in the glycosylation pattern. In fact, differences in sialic acid content between two commercial preparations of PMSG were also obtained, which could lead to differences in their biological potency. These results show the importance of having a standardized production process, as occurs in a recombinant protein bioprocess. Besides, our results reflect the importance of the glycan moieties on eCG conformation and hence in its biological activity, preventing denaturing processes such as aggregation.


Subject(s)
Chorionic Gonadotropin , Gonadotropins, Equine , Pregnancy , Female , Animals , Horses , Glycosylation , Recombinant Proteins/chemistry , Electrophoresis, Polyacrylamide Gel
7.
Theriogenology ; 172: 8-19, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34082223

ABSTRACT

Equine chorionic gonadotropin (eCG) is a heterodimeric glycoprotein hormone produced by pregnant mares that has been used to improve reproductive performance in different domestic species. Several strategies to produce the hormone in a recombinant way have been reported; nevertheless, no approach has been able to produce a recombinant eCG (reCG) with significant in vivo bioactivity or in sufficient quantities for commercial purposes. For this reason, the only current product available on the market consists of partially purified preparations from serum of pregnant mares (PMSG). Herein, we describe a highly efficient process based on third-generation lentiviral vectors as delivery method for the production of reCG in suspension CHO-K1 cells, with productivities above 20 IU 106 cell-1.d-1 and 70% purification yields after one purification step. Importantly, reCG demonstrated biological activity in cattle, since around 30 µg of reCG were needed to exert the same biologic effect of 400 IU of PMSG in an ovulation synchronization protocol. The results obtained demonstrate that the developed strategy represents an attractive option for the production of reCG and constitutes an auspicious alternative for the replacement of animals as a source of PMSG.


Subject(s)
Chorionic Gonadotropin , Gonadotropins, Equine , Animals , CHO Cells , Cattle , Chorionic Gonadotropin/pharmacology , Cricetinae , Cricetulus , Female , Gonadotropins, Equine/pharmacology , Horses , Ovulation , Pregnancy
8.
Biotechnol Prog ; 33(5): 1334-1345, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28840666

ABSTRACT

Fabry disease is an X-linked recessive disorder caused by a deficiency in lysosomal α-Galactosidase A. Currently, two enzyme replacement therapies (ERT) are available. However, access to orphan drugs continues to be limited by their high price. Selection of adequate high-expression systems still constitutes a challenge for alleviating the cost of treatments. Several strategies have been implemented, with varying success, trying to optimize the production process of recombinant human α-Galactosidase A (rhαGAL) in Chinese hamster ovary (CHO-K1) cells. Herein, we describe for the first time the application of a strategy based on third-generation lentiviral particles (LP) transduction of suspension CHO-K1 cells to obtain high-producing rhαGAL clones (3.5 to 59.4 pg cell-1 d-1 ). After two purification steps, the active enzyme was recovered (2.4 × 106 U mg-1 ) with 98% purity and 60% overall yield. Michaelis-Menten analysis demonstrated that rhαGAL was capable of hydrolyzing the synthetic substrate 4MU-α-Gal at a comparable rate to Fabrazyme®, the current CHO-derived ERT available for Fabry disease. In addition, rhαGAL presented the same mannose-6-phosphate (M6P) content, about 40% higher acid sialic amount and 33% reduced content of the immunogenic type of sialic acid (Neu5Gc) than the corresponding ones for Fabrazyme®. In comparison with other rhαGAL production processes reported to date, our approach achieves the highest rhαGAL productivity preserving adequate activity and glycosylation pattern. Even more, considering the improved glycosylation characteristics of rhαGAL, which might provide advantages regarding pharmacokinetics, our enzyme could be postulated as a promising alternative for therapeutic use in Fabry disease. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1334-1345, 2017.


Subject(s)
Bioreactors , Gene Transfer Techniques , Genetic Vectors/genetics , Lentivirus/genetics , Recombinant Proteins , alpha-Galactosidase , Animals , CHO Cells , Cricetinae , Cricetulus , Fabry Disease , Humans , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , alpha-Galactosidase/genetics , alpha-Galactosidase/isolation & purification , alpha-Galactosidase/metabolism
9.
J Biotechnol ; 221: 13-24, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26806490

ABSTRACT

Improving in vivo half-life and in vitro stability of protein-based therapeutics is a current challenge for the biopharmaceutical industry. In particular, recombinant human interferon alpha-2b (rhIFN-α2b), which belongs to a group of cytokines extensively used for the treatment of viral diseases and cancers, shows a poor stability in solution and an extremely short plasma half-life which determines a strict therapeutic regimen comprising high and repeated doses. In this work, we have used a strategy based on the fusion of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin (hCG) ß-subunit, bearing four O-linked oligosaccharide recognition sites, to each or both N- and C-terminal ends of rhIFN-α2b. Molecules containing from 5 (CTP-IFN and IFN-CTP) to 9 (CTP-IFN-CTP) O-glycosylation sites were efficiently expressed and secreted to CHO cells supernatants, and exhibited antiviral and antiproliferative bioactivities in vitro. Significant improvements in pharmacokinetics in rats were achieved through this approach, since the doubly CTP-modified IFN variant showed a 10-fold longer elimination half-life and a 19-fold decreased plasma apparent clearance compared to the wild-type cytokine. Moreover, CTP-IFN-CTP demonstrated a significant increase in in vitro thermal resistance and a higher stability against plasma protease inactivation, both features attributed to the stabilizing effects of the O-glycans provided by the CTP moiety. These results constitute the first report that postulates CTP as a tag for improving both the in vitro and in vivo stability of rhIFN-α2b which, in turn, would positively influence its in vivo bioactivity.


Subject(s)
Chorionic Gonadotropin, beta Subunit, Human/chemistry , Interferon-alpha/genetics , Peptide Fragments/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacokinetics , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacokinetics , CHO Cells , Cattle , Cell Line , Chorionic Gonadotropin, beta Subunit, Human/genetics , Cricetulus , Cytostatic Agents/metabolism , Cytostatic Agents/pharmacokinetics , Drug Stability , HEK293 Cells , Humans , Interferon-alpha/metabolism , Peptide Fragments/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL