Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Biochem Biophys ; 469(2): 220-31, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17999913

ABSTRACT

The kinesin spindle protein (KSP, also known as Eg5) is essential for the proper separation of spindle poles during mitosis, and inhibition results in mitotic arrest and the formation of characteristic monoaster spindles. Several distinct classes of KSP inhibitors have been described previously in the public and patent literature. However, most appear to share a common induced-fit allosteric binding site, suggesting a common mechanism of inhibition. In a high-throughput screen for inhibitors of KSP, a novel class of thiazole-containing inhibitors was identified. Unlike the previously described allosteric KSP inhibitors, the thiazoles described here show ATP competitive kinetic behavior, consistent with binding within the nucleotide binding pocket. Although they bind to a pocket that is highly conserved across kinesins, these molecules exhibit significant selectivity for KSP over other kinesins and other ATP-utilizing enzymes. Several of these compounds are active in cells and produce a phenotype similar to that observed with previously published allosteric inhibitors of KSP.


Subject(s)
Adenosine Triphosphate/metabolism , Biochemistry/methods , Kinesins/antagonists & inhibitors , Kinesins/chemistry , Mitosis , Adenosine Triphosphate/chemistry , Allosteric Site , Binding, Competitive , Drug Design , Humans , Kinesins/metabolism , Models, Biological , Models, Chemical , Nucleotides/chemistry , Phenotype , Protein Binding , Thiazoles/pharmacology
2.
Biochem Pharmacol ; 79(10): 1526-33, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20109439

ABSTRACT

Compound A, 1-{(3R,3aR)-3-[3-(4-acetylpiperazin-1-yl)propyl]-7-fluoro-3-phenyl-3a,4-dihydro-3H-pyrazolo[5,1-c][1,4]benzoxazin-2-yl}ethanone, is a novel and potent inhibitor of the mitotic kinesin spindle protein. Metabolism studies with human hepatocytes showed that Compound A underwent significant ketone reduction to its biologically active metabolite M1. Here, we describe the studies that characterized the metabolic interconversion between Compound A and M1 in vitro in human tissues. LC-MS/MS analysis showed that the ketone reduction was stereospecific for M1 with no diastereomer of M1 detected in incubations with human hepatocytes. Interestingly, such stereospecific ketone reduction was not observed with Compound B, the enantiomer of Compound A. No reductive products were observed when Compound B was incubated with human hepatocytes. Studies with human liver subcellular fractions showed that Compound A was reduced to M1 primarily by human liver cytosol with little contribution from human liver microsomes and mitochondria. NADPH was the preferred cofactor for the reduction reaction. Reverse oxidation of M1 back to Compound A was also observed, preferentially in human liver cytosol with NADP(+) as the cofactor. The interconversion between Compound A and M1 in human liver cytosol was inhibited significantly by flufenamic acid and phenolphthalein (potent inhibitors for aldo-keto reductase 1Cs, p<0.05), but not by menadione, a selective inhibitor for carbonyl reductase. In addition to the liver, S9 from human lung and kidney was also capable of catalyzing this interconversion. Collectively, the results implicated the aldo-keto reductase 1Cs as the most likely enzymes responsible for the metabolic interconversion of Compound A and its active metabolite M1.


Subject(s)
Benzoxazines/pharmacology , Kinesins/antagonists & inhibitors , Pyrazoles/pharmacology , Cells, Cultured , Chromatography, High Pressure Liquid , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Kidney/drug effects , Kidney/metabolism , Lung/drug effects , Lung/metabolism , NADP/metabolism , Stereoisomerism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
3.
Bioorg Med Chem Lett ; 17(21): 5989-94, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17804227

ABSTRACT

The development of 2,5-dihydro-4H-pyrazolo[4,3-c]quinolin-4-ones as inhibitors of Chk1 kinase is described. Introduction of a fused ring at the C7/C8 positions of the pyrazoloquinolinone provided an increase in potency while guidance from overlapping inhibitor bound Chk1 X-ray crystal structures contributed to the discovery of a potent and solubilizing propyl amine moiety in compound 52 (Chk1 IC(50)=3.1 nM).


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/pharmacology , Checkpoint Kinase 1 , Crystallography, X-Ray , Models, Molecular , Protein Kinase Inhibitors/chemistry , Quinolones/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 17(22): 6280-5, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17900896

ABSTRACT

From HTS lead 1, a novel benzoisoquinolinone class of ATP-competitive Chk1 inhibitors was devised and synthesized via a photochemical route. Using X-ray crystallography as a guide, potency was rapidly enhanced through the installation of a tethered basic amine designed to interact with an acidic residue (Glu91) in the enzyme pocket. Further SAR was explored at the solvent front and near to the H1 pocket and resulted in the discovery of low MW, sub-nanomolar inhibitors of Chk1.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/chemical synthesis , Quinolones/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Photochemistry , Protein Kinases/chemistry , Quinolones/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 17(20): 5671-6, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17804233

ABSTRACT

Observations from two structurally related series of KSP inhibitors led to the proposal and discovery of dihydropyrazolobenzoxazines that possess ideal properties for cancer drug development. The synthesis and characterization of this class of inhibitors along with relevant pharmacokinetic and in vivo data are presented. The synthesis is highlighted by a key [3+2] cycloaddition to form the pyrazolobenzoxazine core followed by diastereospecific installation of a quaternary center.


Subject(s)
Benzoxazines/chemistry , Benzoxazines/pharmacology , Drug Design , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Mitosis/drug effects , Pyrazoles/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/pharmacokinetics , Cell Line , Dogs , Humans , Hydrogen/chemistry , Molecular Structure , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 16(7): 1775-9, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16439123

ABSTRACT

The evolution of 2,4-diaryl-2,5-dihydropyrroles as inhibitors of KSP is described. Introduction of basic amide and urea moieties to the dihydropyrrole nucleus enhanced potency and aqueous solubility, simultaneously, and provided compounds that caused mitotic arrest of A2780 human ovarian carcinoma cells with EC(50)s<10nM. Ancillary hERG activity was evaluated for this series of inhibitors.


Subject(s)
Kinesins/antagonists & inhibitors , Pyrroles/chemistry , Pyrroles/pharmacology , Cell Line, Tumor , Female , Humans , Models, Molecular , Ovarian Neoplasms/pathology , Pyrroles/chemical synthesis , Spindle Apparatus/chemistry
7.
Bioorg Med Chem Lett ; 16(7): 1780-3, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16439122

ABSTRACT

2,4-Diaryl-2,5-dihydropyrroles have been discovered to be novel, potent and water-soluble inhibitors of KSP, an emerging therapeutic target for the treatment of cancer. A potential concern for these basic KSP inhibitors (1 and 2) was hERG binding that can be minimized by incorporation of a potency-enhancing C2 phenol combined with neutral N1 side chains. Aqueous solubility was restored to these, and other, non-basic inhibitors, through a phosphate prodrug strategy.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Kinesins/antagonists & inhibitors , Prodrugs , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Animals , Area Under Curve , Dogs , Protein Binding , Pyrroles/metabolism , Pyrroles/pharmacokinetics , Rats , Solubility , Spindle Apparatus/chemistry , Water
8.
Bioorg Med Chem Lett ; 14(4): 909-12, 2004 Feb 23.
Article in English | MEDLINE | ID: mdl-15012992

ABSTRACT

3,7-Diarylsubstituted imidazopyridines were designed and developed as a new class of KDR kinase inhibitors. A variety of imidazopyridines were synthesized and potent inhibitors of KDR kinase activity were identified with good aqueous solubility.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Drug Design , Humans , Molecular Structure , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL