Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Alzheimers Dis ; 99(4): 1285-1301, 2024.
Article in English | MEDLINE | ID: mdl-38788074

ABSTRACT

Background: Caffeoylquinic acid (CQA), which is abundant in coffee beans and Centella asiatica, reportedly improves cognitive function in Alzheimer's disease (AD) model mice, but its effects on neuroinflammation, neuronal loss, and the amyloid-ß (Aß) plaque burden have remained unclear. Objective: To assess the effects of a 16-week treatment with CQA on recognition memory, working memory, Aß levels, neuronal loss, neuroinflammation, and gene expression in the brains of 5XFAD mice, a commonly used mouse model of familial AD. Methods: 5XFAD mice at 7 weeks of age were fed a 0.8% CQA-containing diet for 4 months and then underwent novel object recognition (NOR) and Y-maze tests. The Aß levels and plaque burden were analyzed by enzyme-linked immunosorbent assay and immunofluorescent staining, respectively. Immunostaining of markers of mature neurons, synapses, and glial cells was analyzed. AmpliSeq transcriptome analysis and quantitative reverse-transcription-polymerase chain reaction were performed to assess the effect of CQA on gene expression levels in the cerebral cortex of the 5XFAD mice. Results: CQA treatment for 4 months improved recognition memory and ameliorated the reduction of mature neurons and synaptic function-related gene mRNAs. The Aß levels, plaque burden, and glial markers of neuroinflammation seemed unaffected. Conclusions: These findings suggest that CQA treatment mitigates neuronal loss and improves cognitive function without reducing Aß levels or neuroinflammation. Thus, CQA is a potential therapeutic compound for AD, improving cognitive function via as-yet unknown mechanisms independent of reductions in Aß or neuroinflammation.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , Mice, Transgenic , Neurons , Plaque, Amyloid , Quinic Acid , Animals , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/therapeutic use , Mice , Plaque, Amyloid/drug therapy , Plaque, Amyloid/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Male , Maze Learning/drug effects
2.
Mol Brain ; 14(1): 170, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34794460

ABSTRACT

Despite the established roles of the dopaminergic system in promoting arousal, the effects of loss of dopamine on the patterns of sleep and wakefulness remain elusive. Here, we examined the sleep architecture of dopamine-deficient (DD) mice, which were previously developed by global knockout of tyrosine hydroxylase and its specific rescue in noradrenergic and adrenergic neurons. We found that DD mice have reduced time spent in wakefulness. Unexpectedly, DD mice also exhibited a marked reduction in the time spent in rapid eye movement (REM) sleep. The electroencephalogram power spectrum of all vigilance states in DD mice were also affected. These results support the current understanding of the critical roles of the dopaminergic system in maintaining wakefulness and also implicate its previously unknown effects on REM sleep.


Subject(s)
Sleep, REM , Wakefulness , Animals , Dopamine , Electroencephalography , Mice , Sleep/physiology , Sleep, REM/physiology , Wakefulness/physiology
3.
eNeuro ; 7(2)2020.
Article in English | MEDLINE | ID: mdl-32321771

ABSTRACT

Alzheimer's disease (AD) patients often suffer from sleep disturbances. Alterations in sleep, especially rapid eye movement sleep (REMS), can precede the onset of dementia. To accurately characterize the sleep impairments accompanying AD and their underlying mechanisms using animal models, it is crucial to use models in which brain areas are affected in a manner similar to that observed in the actual patients. Here, we focused on AppNL-G-F mice, in which expression levels and patterns of mutated amyloid precursor protein (APP) follow the endogenous patterns. We characterized the sleep architecture of male AppNL-G-F homozygous and heterozygous mice at two ages (six and 12 months). At six months, homozygous mice exhibited reduced REMS, which was further reduced at 12 months together with a slight reduction in non-REMS (NREMS). By contrast, heterozygous mice exhibited an overall normal sleep architecture. Homozygous mice also exhibited decreased electroencephalogram γ to δ power ratio during REMS from six months, resembling the electroencephalogram slowing phenomenon observed in preclinical or early stages of AD. In addition, homozygous mice showed learning and memory impairments in the trace fear conditioning (FC) at both ages, and task performance strongly correlated with REMS amount at 12 months. Finally, histologic analyses revealed that amyloid-ß accumulation in the pontine tegmental area and ventral medulla followed a course similar to that of the REMS reduction. These findings support the notion that changes in REMS are an early marker of AD and provide a starting point to address the mechanism of sleep deficits in AD and the effects on cognition.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/complications , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Transgenic , Sleep
4.
Curr Biol ; 30(6): 1002-1010.e4, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32032507

ABSTRACT

Classical transection studies suggest that, in addition to the hypothalamus, the brainstem is essential for non-rapid eye movement (NREM) sleep. The circuits underlying this function, however, have remained largely unknown. We identified a circuit distributed in the midbrain, pons, and medulla that promotes NREM sleep in mice. We focused on the sublaterodorsal tegmentum, an area implicated in dual regulation of REM and NREM sleep. Transcriptomic and genetic analyses revealed that neurons positive for the neuropeptide neurotensin promote NREM sleep. Further analyses identified downstream NREM sleep-promoting neurons in the dorsal deep mesencephalic nucleus, the lateral part of the periaqueductal gray, and the medial vestibular nucleus that were also neurotensinergic. Infusion of neurotensin into the fourth ventricle induced NREM sleep-like cortical activity, whereas mice deficient for neurotensin exhibited increased REM sleep, implicating the involvement of the neuropeptide itself. These findings identify a widely distributed NREM sleep-regulating circuit in the brainstem with a common molecular property.


Subject(s)
Brain Stem/physiology , Neurons/physiology , Sleep, Slow-Wave/physiology , Animals , Female , Male , Mice , Neurotensin/metabolism
5.
Genetics ; 216(3): 753-764, 2020 11.
Article in English | MEDLINE | ID: mdl-32878901

ABSTRACT

The molecular mechanism regulating sleep largely remains to be elucidated. In humans, families that carry mutations in TFAP2B, which encodes the transcription factor AP-2ß, self-reported sleep abnormalities such as short-sleep and parasomnia. Notably, AP-2 transcription factors play essential roles in sleep regulation in the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster Thus, AP-2 transcription factors might have a conserved role in sleep regulation across the animal phyla. However, direct evidence supporting the involvement of TFAP2B in mammalian sleep was lacking. In this study, by using the CRISPR/Cas9 technology, we generated two Tfap2b mutant mouse strains, Tfap2bK144 and Tfap2bK145 , each harboring a single-nucleotide mutation within the introns of Tfap2b mimicking the mutations in two human kindreds that self-reported sleep abnormalities. The effects of these mutations were compared with those of a Tfap2b knockout allele (Tfap2b-). The protein expression level of TFAP2B in the embryonic brain was reduced to about half in Tfap2b+/- mice and was further reduced in Tfap2b-/- mice. By contrast, the protein expression level was normal in Tfap2bK145/+ mice but was reduced in Tfap2bK145/K145 mice to a similar extent as Tfap2b-/- mice. Tfap2bK144/+ and Tfap2bK144/K144 showed normal protein expression levels. Tfap2b+/- female mice showed increased wakefulness time and decreased nonrapid eye movement sleep (NREMS) time. By contrast, Tfap2bK145/+ female mice showed an apparently normal amount of sleep but instead exhibited fragmented NREMS, whereas Tfap2bK144/+ male mice showed reduced NREMS time specifically in the dark phase. Finally, in the adult brain, Tfap2b-LacZ expression was detected in the superior colliculus, locus coeruleus, cerebellum, and the nucleus of solitary tract. These findings provide direct evidence that TFAP2B influences NREMS amounts in mice and also show that different mutations in Tfap2b can lead to diverse effects on sleep architecture.


Subject(s)
Sleep Stages , Transcription Factor AP-2/genetics , Animals , Brain/embryology , Brain/metabolism , Female , Introns , Male , Mice , Point Mutation , Transcription Factor AP-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL