ABSTRACT
Enterobacter cloacae complex isolates have been reported as an important nosocomial multidrug resistance pathogen. In the present study, we investigated antimicrobial susceptibility and the colistin-resistance rates, their genetic determinants and clonality among clinical E. cloacae complex isolates from different Brazilian states. For this, an initial screening was carried out on 94 clinical isolates of E. clocacae complex received between 2016 and 2018 by LAPIH-FIOCRUZ, using EMB plates containing 4 µg/mL of colistin, followed MIC determination, resulting in the selection of 26 colistin-resistant isolates from the complex. The presence of carbapenemases encoding genes (blaKPC, blaNDM and blaOXA-48), plasmidial genes for resistance to polymyxins (mcr1-9) and mutations in chromosomal genes (pmrA, pmrB, phoP and phoQ) described as associated with resistance to polymyxin were screened by PCR and DNA sequencing. Finally, the hsp60 gene was sequenced to identify species of the E. cloacae complex and genetic diversity was evaluated by PFGE and MLST. The results have shown that among 94 E. cloacae complex isolates, 19 (20.2%) were colistin-resistant. The resistant strains exhibited MIC ranging from 4 to 128 µg / mL and E. hormaechei subsp. steigerwaltii was the prevalent species in the complex (31,6%), followed by E. cloacae subsp. cloacae (26,3%). The antimicrobials with the highest susceptibility rate were gentamicin (21%) and tigecycline (26%). Carbapenemases encoding genes (blaKPC n = 5, blaNDM n = 1) were detected in 6 isolates and mcr-9 in one. Among the modifications found in PmrA, PmrB, PhoP e PhoQ (two-component regulatory system), only the S175I substitution in PmrB found in E. cloacae subsp cloacae isolates were considered deleterious (according to the prediction of PROVEAN). By PFGE, 13 profiles were found among E. cloacae complex isolates, with EcD the most frequent. Furthermore, by MLST 10 ST's, and 1 new ST, were identified in E. cloacae. In conclusion, no prevalence of clones or association among carbapenemase production and polymyxin resistance was found between the E. cloacae. Thereby, the results suggest that the increased polymyxin-resistance is related to the selective pressure exerted by the indiscriminate use in hospitals. Lastly, this study highlights the urgent need to elucidate the mechanism involved in the resistance to polymyxin in the E. cloacae complex and the development of measures to control and prevent infections caused by these multiresistant bacteria.
Subject(s)
Drug Resistance, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Plasmids/genetics , Anti-Bacterial Agents/therapeutic use , Brazil , Colistin/therapeutic use , Escherichia coli Proteins/genetics , Humans , Imipenem/therapeutic use , Male , Middle Aged , beta-LactamasesABSTRACT
In Brazil, the production of KPC-type carbapenemases in Enterobacteriales is endemic, leading to widespread use of polymyxins. In the present study, 502 Klebsiella pneumoniae isolates were evaluated for resistance to polymyxins, their genetic determinants and clonality, in addition to the presence of carbapenem resistance genes and evaluation of antimicrobial resistance. Resistance to colistin (polymyxin E) was evaluated through initial selection on EMB agar containing 4% colistin sulfate, followed by Minimal Inhibitory Concentration (MIC) determination by broth microdilution. The susceptibility to 17 antimicrobials was assessed by disk diffusion. The presence of blaKPC, blaNDM and blaOXA-48-like carbapenemases was investigated by phenotypic methods and conventional PCR. Molecular typing was performed by PFGE and MLST. Allelic variants of the mcr gene were screened by PCR and chromosomal mutations in the pmrA, pmrB, phoP, phoQ and mgrB genes were investigated by sequencing. Our work showed a colistin resistance frequency of 29.5% (n = 148/502) in K. pneumoniae isolates. Colistin MICs from 4 to >128 µg/mL were identified (MIC50 = 64 µg/mL; MIC90 >128 µg/mL). All isolates were considered MDR, with the lowest resistance rates observed for amikacin (34.4%), and 19.6% of the isolates were resistant to all tested antimicrobials. The blaKPC gene was identified in 77% of the isolates, in consonance with the high rate of resistance to polymyxins related to its use as a therapeutic alternative. Through XbaI-PFGE, 51 pulsotypes were identified. MLST showed 21 STs, with ST437, ST258 and ST11 (CC11) being the most prevalent, and two new STs were determined: ST4868 and ST4869. The mcr-1 gene was identified in 3 K. pneumoniae isolates. Missense mutations in chromosomal genes were identified, as well as insertion sequences in mgrB. Furthermore, the identification of chromosomal mutations in K. pneumoniae isolates belonging from CC11 ensures its success as a high-risk epidemic clone in Brazil and worldwide.
Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Brazil , Colistin/pharmacology , Colistin/therapeutic use , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/genetics , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Microbial Sensitivity Tests , Multilocus Sequence Typing , Polymyxins/adverse effects , Polymyxins/pharmacology , Polymyxins/therapeutic use , beta-Lactamases/genetics , beta-Lactamases/therapeutic useABSTRACT
In this study, we report the isolation of OXA-72-producing Acinetobacter pittii in Brazil. A carbapenem-resistant A. pittii strain was recovered from a hospitalized female patient from Espírito Santo, Southeastern Brazil. PCR screening and DNA sequencing allowed us to identify the presence of blaOXA-72. We observed blaOXA-72 in a ~11kb plasmid and flanked by XerC/XerD-binding sites.