Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625048

ABSTRACT

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Subject(s)
Neoplasms/pathology , Aneuploidy , Chromosomes/genetics , Cluster Analysis , CpG Islands , DNA Methylation , Databases, Factual , Humans , MicroRNAs/metabolism , Mutation , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasms/genetics , RNA, Messenger/metabolism
2.
Cell ; 173(2): 305-320.e10, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625049

ABSTRACT

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.


Subject(s)
Carcinogenesis/genetics , Genomics , Neoplasms/pathology , DNA Repair/genetics , Databases, Genetic , Genes, Neoplasm , Humans , Metabolic Networks and Pathways/genetics , Microsatellite Instability , Mutation , Neoplasms/genetics , Neoplasms/immunology , Transcriptome , Tumor Microenvironment/genetics
3.
Nature ; 619(7971): 793-800, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380777

ABSTRACT

Aneuploidies-whole-chromosome or whole-arm imbalances-are the most prevalent alteration in cancer genomes1,2. However, it is still debated whether their prevalence is due to selection or ease of generation as passenger events1,2. Here we developed a method, BISCUT, that identifies loci subject to fitness advantages or disadvantages by interrogating length distributions of telomere- or centromere-bounded copy-number events. These loci were significantly enriched for known cancer driver genes, including genes not detected through analysis of focal copy-number events, and were often lineage specific. BISCUT identified the helicase-encoding gene WRN as a haploinsufficient tumour-suppressor gene on chromosome 8p, which is supported by several lines of evidence. We also formally quantified the role of selection and mechanical biases in driving aneuploidy, finding that rates of arm-level copy-number alterations are most highly correlated with their effects on cellular fitness1,2. These results provide insight into the driving forces behind aneuploidy and its contribution to tumorigenesis.


Subject(s)
Aneuploidy , Cell Transformation, Neoplastic , Neoplasms , Humans , Cell Transformation, Neoplastic/genetics , DNA Copy Number Variations/genetics , Neoplasms/genetics , Neoplasms/pathology , Oncogenes/genetics , Telomere/genetics , Centromere/genetics , Cell Lineage , Chromosomes, Human, Pair 8/genetics , Genes, Tumor Suppressor
4.
Nature ; 590(7846): 492-497, 2021 02.
Article in English | MEDLINE | ID: mdl-33505027

ABSTRACT

Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development1,2. Cells that undergo WGD (WGD+ cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD+ cells are more dependent than WGD- cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify KIF18A, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD+ cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD- cells, its loss induces notable mitotic errors in WGD+ cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD+ cancer cells while sparing the normal, non-transformed WGD- cells that comprise human tissue.


Subject(s)
Genome, Human/genetics , Mitosis/drug effects , Neoplasms/genetics , Neoplasms/pathology , Tetraploidy , Abnormal Karyotype/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Genes, Lethal/genetics , Humans , Kinesins/deficiency , Kinesins/genetics , Kinesins/metabolism , M Phase Cell Cycle Checkpoints/drug effects , Male , Mitosis/genetics , Proteasome Endopeptidase Complex/metabolism , Reproducibility of Results , Spindle Apparatus/drug effects
5.
Proc Natl Acad Sci U S A ; 120(14): e2216700120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36989302

ABSTRACT

Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Chromosomal Instability , Chromosomes/metabolism , Human papillomavirus 16/genetics , Kinesins/genetics , Kinesins/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
Bioinformatics ; 37(16): 2461-2463, 2021 08 25.
Article in English | MEDLINE | ID: mdl-33247715

ABSTRACT

SUMMARY: The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. AVAILABILITY AND IMPLEMENTATION: ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Aneuploidy , Software , Documentation , Genome , Genomics , Humans
8.
Cytometry A ; 91(5): 519-526, 2017 05.
Article in English | MEDLINE | ID: mdl-28295966

ABSTRACT

Due to the limitations of fluorescence imaging techniques, the study of intracellular cargo is typically restricted to two-dimensional analyses. To overcome low light levels and the risk of phototoxicity, we employ quantitative phase imaging, a family of full-field imaging techniques that measure the optical path length shift introduced by the specimen. Specifically, we use spatial light interference microscopy (SLIM) to study the transport of mass in whole tomographic volumes and show that a time-correlation technique, dispersion-relation phase spectroscopy (DPS), can be used to simultaneously assay the horizontal and vertical traffic of mass through a cell. To validate our method, we compare the traffic inside cell bodies and neuronal extensions, showing that the vertical transport of mass may prove a more sensitive and interesting metric than similar measurements limited to a 2D, horizontal plane. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Microscopy, Interference/methods , Neurites/ultrastructure , Neurons/ultrastructure , Tomography/methods , Algorithms , Animals , Humans , Spectrum Analysis/methods
9.
Blood ; 124(1): 24-32, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24829207

ABSTRACT

Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model.


Subject(s)
Anemia, Diamond-Blackfan/genetics , Mutation , Ribosomal Proteins/genetics , Age of Onset , Amino Acid Sequence , Animals , Child , Child, Preschool , DNA Mutational Analysis , Exome/genetics , Female , Germ-Line Mutation , Humans , Male , Molecular Sequence Data , Pedigree , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Zebrafish
10.
Cancer Res ; 84(16): 2575-2587, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38924459

ABSTRACT

Aneuploidy, or a change in the number of whole chromosomes or chromosome arms, is a near-universal feature of cancer. Chromosomes affected by aneuploidy are not random, with observed cancer-specific and tissue-specific patterns. Recent advances in genome engineering methods have allowed the creation of models with targeted aneuploidy events. These models can be used to uncover the downstream effects of individual aneuploidies on cancer phenotypes including proliferation, apoptosis, metabolism, and immune signaling. Here, we review the current state of research into the patterns of aneuploidy in cancer and their impact on signaling pathways and biological processes.


Subject(s)
Aneuploidy , Neoplasms , Signal Transduction , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Signal Transduction/genetics , Animals
11.
Viruses ; 16(4)2024 03 25.
Article in English | MEDLINE | ID: mdl-38675844

ABSTRACT

Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. CIN is defined as a continuous rate of chromosome missegregation events over the course of multiple cell divisions. CIN causes aneuploidy, a state of abnormal chromosome content differing from a multiple of the haploid. Human papillomavirus (HPV) is a well-known cause of squamous cancers of the oropharynx, cervix, and anus. The HPV E6 and E7 oncogenes have well-known roles in carcinogenesis, but additional genomic events, such as CIN and aneuploidy, are often required for tumor formation. HPV+ squamous cancers have an increased frequency of specific types of CIN, including polar chromosomes. CIN leads to chromosome gains and losses (aneuploidies) specific to HPV+ cancers, which are distinct from HPV- cancers. HPV-specific CIN and aneuploidy may have implications for prognosis and therapeutic response and may provide insight into novel therapeutic vulnerabilities. Here, we review HPV-specific types of CIN and patterns of aneuploidy in squamous cancers, as well as how this impacts patient prognosis and treatment.


Subject(s)
Aneuploidy , Chromosomal Instability , Papillomavirus Infections , Female , Humans , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/genetics , Human Papillomavirus Viruses/genetics , Human Papillomavirus Viruses/pathogenicity , Neoplasms, Squamous Cell/virology , Neoplasms, Squamous Cell/genetics , Neoplasms, Squamous Cell/pathology , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomavirus Infections/genetics
12.
iScience ; 27(8): 110521, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39175773

ABSTRACT

Defining the mechanisms that regulate stem cell maintenance, proliferation, and differentiation is critical for identifying therapies for improving stem cell function under stress. Here, we have identified the tumor suppressor, inhibitor of growth 4 (Ing4), as a critical regulator of hematopoietic stem cell (HSC) homeostasis. Cancer cell line models with Ing4 deficiency have shown that Ing4 functions as a tumor suppressor, in part, due to Ing4-mediated regulation of several major signaling pathways, including c-Myc. In HSCs, we show Ing4 deficiency promotes gene expression signatures associated with activation, yet HSCs are arrested in G0, expressing several markers of quiescence. Functionally, Ing4-deficient HSCs demonstrate robust regenerative capacity following transplantation. Our findings suggest Ing4 deficiency promotes a poised state in HSCs, where they appear transcriptionally primed for activation but remain in a resting state. Our model provides key tools for further identification and characterization of pathways that control quiescence and self-renewal in HSCs.

13.
Clin Cancer Res ; 29(5): 910-920, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36508165

ABSTRACT

PURPOSE: The purpose of this study was to better understand the complex molecular biomarkers and signatures of head and neck cancer (HNC) among Black patients and identify possible molecular changes associated with HNC disparities. EXPERIMENTAL DESIGN: Molecular subtypes and genomic changes in HNC samples from patients of African and European ancestry in The Cancer Genome Atlas, Memorial Sloan Kettering Cancer Center, Broad Institute, MD Anderson Cancer Center, and John Hopkins University were identified. Molecular features (genomic, proteomic, transcriptomic) associated with race and genomic alterations associated with clinical outcomes were determined. An independent cohort of HNC tumor specimens was used to validate the primary findings using IHC. RESULTS: Black patients were found to have a younger age at diagnosis, more aggressive tumor types, higher rates of metastasis, and worse survival compared with White patients. Black patients had fewer human papillomavirus-positive tumor types and higher frequencies of laryngeal subtype tumors. Higher frequencies of TP53, MYO18B, KMT2D, and UNC13C mutations and a lower frequency of PIK3CA mutations were observed in Black patients. Tumors of Black patients showed significant enrichment of c-MYC and RET-tyrosine signaling and amplifications. A significant increase in tumor expression of c-MYC in Black patients was observed and was associated with poor survival outcomes in the independent cohort. CONCLUSIONS: Novel genomic modifications and molecular signatures may be related to environmental, social, and behavioral factors associated with racial disparities in HNC. Unique tumor mutations and biological pathways have potential clinical utility in providing more targeted and individualized screening, diagnostic, and treatment modalities to improve health outcomes.


Subject(s)
Black People , Head and Neck Neoplasms , Humans , Black People/genetics , Head and Neck Neoplasms/ethnology , Head and Neck Neoplasms/genetics , Mutation , Proteomics , White People/genetics
14.
Cancer Discov ; 13(12): 2632-2651, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37676642

ABSTRACT

TP53 mutations are frequent in esophageal squamous cell carcinoma (ESCC) and other SCCs and are associated with a proclivity for metastasis. Here, we report that colony-stimulating factor-1 (CSF-1) expression is upregulated significantly in a p53-R172H-dependent manner in metastatic lung lesions of ESCC. The p53-R172H-dependent CSF-1 signaling, through its cognate receptor CSF-1R, increases tumor cell invasion and lung metastasis, which in turn is mediated in part through Stat3 phosphorylation and epithelial-to-mesenchymal transition (EMT). In Trp53R172H tumor cells, p53 occupies the Csf-1 promoter. The Csf-1 locus is enriched with histone 3 lysine 27 acetylation (H3K27ac), which is likely permissive for fostering an interaction between bromodomain-containing domain 4 (BRD4) and p53-R172H to regulate Csf-1 transcription. Inhibition of BRD4 not only reduces tumor invasion and lung metastasis but also reduces circulating CSF-1 levels. Overall, our results establish a novel p53-R172H-dependent BRD4-CSF-1 axis that promotes ESCC lung metastasis and suggest avenues for therapeutic strategies for this difficult-to-treat disease. SIGNIFICANCE: The invasion-metastasis cascade is a recalcitrant barrier to effective cancer therapy. We establish that the p53-R172H-dependent BRD4-CSF-1 axis is a mediator of prometastatic properties, correlates with patient survival and tumor stages, and its inhibition significantly reduces tumor cell invasion and lung metastasis. This axis can be exploited for therapeutic advantage. This article is featured in Selected Articles from This Issue, p. 2489.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lung Neoplasms , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gain of Function Mutation , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Nat Genet ; 55(1): 19-25, 2023 01.
Article in English | MEDLINE | ID: mdl-36624340

ABSTRACT

Single-cell genomics enables dissection of tumor heterogeneity and molecular underpinnings of drug response at an unprecedented resolution1-11. However, broad clinical application of these methods remains challenging, due to several practical and preanalytical challenges that are incompatible with typical clinical care workflows, namely the need for relatively large, fresh tissue inputs. In the present study, we show that multimodal, single-nucleus (sn)RNA/T cell receptor (TCR) sequencing, spatial transcriptomics and whole-genome sequencing (WGS) are feasible from small, frozen tissues that approximate routinely collected clinical specimens (for example, core needle biopsies). Compared with data from sample-matched fresh tissue, we find a similar quality in the biological outputs of snRNA/TCR-seq data, while reducing artifactual signals and compositional biases introduced by fresh tissue processing. Profiling sequentially collected melanoma samples from a patient treated in the KEYNOTE-001 trial12, we resolved cellular, genomic, spatial and clonotype dynamics that represent molecular patterns of heterogeneous intralesional evolution during anti-programmed cell death protein 1 therapy. To demonstrate applicability to banked biospecimens of rare diseases13, we generated a single-cell atlas of uveal melanoma liver metastasis with matched WGS data. These results show that single-cell genomics from archival, clinical specimens is feasible and provides a framework for translating these methods more broadly to the clinical arena.


Subject(s)
Genomics , Neoplasms , Humans , Genomics/methods , Gene Expression Profiling/methods , Neoplasms/genetics , Sequence Analysis, RNA/methods , Whole Genome Sequencing
16.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711674

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.

17.
Science ; 381(6660): eadg4521, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37410869

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.


Subject(s)
Cell Cycle Proteins , Gene Editing , Neoplasms , Oncogenes , Trisomy , Tumor Suppressor Protein p53 , Humans , Cell Cycle Proteins/genetics , Mutation , Neoplasms/genetics , Neoplasms/therapy , Proto-Oncogene Proteins/metabolism , Gene Editing/methods , Tumor Suppressor Protein p53/genetics , Carcinogenesis/genetics
18.
Matern Child Nutr ; 8(1): 88-102, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22136222

ABSTRACT

Strong evidence supports the health benefits of breastfeeding contributing to the public health campaign to improve initiation and duration of breastfeeding globally, yet breastfeeding continuation rates are persistently low in the UK. Inadequate support from health professionals appears to be an underlying feature, aggravated by a dearth of professional education that uses a biopsychosocial approach. This paper describes how using women's video narratives of their lived experience of breastfeeding within higher education impacted positively on the attitudes of a group of midwives in relation to supporting breastfeeding women. It reports on the qualitative element of a two-phase sequential mixed methods study where focus group methods generated rich data about how and why the educational intervention altered attitudes. Analysis was thematic. Six major themes emerged, 'listening and learning from real women's experiences'; 'generation of emotions'; 'acquisition of new knowledge and learning'; 'reflection on practice'; 'promotion of independent learning' and 'sharing learning and ideas with peers'. 'Listening and learning from real women's experiences' was central to learning, and was pivotal to attitudinal change, motivating an intense need to improve practice. Findings support the value of using women's video narratives within midwifery education, through their power to integrate affective and cognitive learning, and to promote a transformative learning process. This novel approach brings value-added learning benefits by enhancing the potential to improve attitudes towards supporting breastfeeding women and improving clinical practice.


Subject(s)
Attitude of Health Personnel , Breast Feeding/psychology , Midwifery/education , Midwifery/standards , Cohort Studies , Female , Focus Groups , Humans , Narration , Video Recording
19.
J Exp Clin Cancer Res ; 40(1): 70, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596979

ABSTRACT

BACKGROUND: MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS: Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS: Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS: Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.


Subject(s)
Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , MicroRNAs/metabolism , Proto-Oncogene Proteins c-met/genetics , Animals , Apoptosis/physiology , Down-Regulation , Female , Head and Neck Neoplasms/metabolism , Heterografts , Humans , Immune Evasion , Male , Mice , Mice, Nude , MicroRNAs/genetics , MicroRNAs/immunology , Middle Aged , Oncogenes , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/immunology , Proto-Oncogene Proteins c-met/metabolism , Tumor Escape
20.
Nat Commun ; 12(1): 7139, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880227

ABSTRACT

Amplification and overexpression of the SOX2 oncogene represent a hallmark of squamous cancers originating from diverse tissue types. Here, we find that squamous cancers selectively amplify a 3' noncoding region together with SOX2, which harbors squamous cancer-specific chromatin accessible regions. We identify a single enhancer e1 that predominantly drives SOX2 expression. Repression of e1 in SOX2-high cells causes collapse of the surrounding enhancers, remarkable reduction in SOX2 expression, and a global transcriptional change reminiscent of SOX2 knockout. The e1 enhancer is driven by a combination of transcription factors including SOX2 itself and the AP-1 complex, which facilitates recruitment of the co-activator BRD4. CRISPR-mediated activation of e1 in SOX2-low cells is sufficient to rebuild the e1-SOX2 loop and activate SOX2 expression. Our study shows that squamous cancers selectively amplify a predominant enhancer to drive SOX2 overexpression, uncovering functional links among enhancer activation, chromatin looping, and lineage-specific copy number amplifications of oncogenes.


Subject(s)
Carcinoma, Squamous Cell/genetics , Gene Expression Regulation, Neoplastic , Neoplasms, Squamous Cell/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , CRISPR-Cas Systems , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Chromatin , Enhancer Elements, Genetic , Epigenomics , Female , Gene Knockout Techniques , Heterografts , Humans , Oncogenes/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL