Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Comput Math Methods Med ; 2022: 2702328, 2022.
Article in English | MEDLINE | ID: mdl-35770126

ABSTRACT

As the most prevalent and deadly malignancy, brain tumors have a dismal survival rate when they are at their most hazardous. Using mostly traditional medical image processing methods, segmenting and classifying brain malignant tumors is a challenging and time-consuming task. Indeed, medical research reveals that categorization performed manually with the help of a person might result in inaccurate prediction and diagnosis. This is mostly due to the fact that malignancies and normal tissues are so dissimilar and comparable. The brain, lung, liver, breast, and prostate are all studied using imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound. This research makes significant use of CT and X-ray imaging to identify brain malignant tumors. The purpose of this article is to examine the use of convolutional neural networks (CNNs) in image-based diagnosis of brain cancers. It expedites and improves the treatment's reliability. As a result of the abundance of research on this issue, the provided model focuses on increasing accuracy via the use of a transfer learning method. This experiment was conducted using Python and Google Colab. Deep features were extracted using VGG19 and MobileNetV2, two pretrained deep CNN models. The classification accuracy is used to evaluate this work's performance. This research achieved a 97 percent accuracy rate by MobileNetV2 and a 91 percent accuracy rate by the VGG19 algorithm. This allows us to find malignancies before they have a negative effect on our bodies, like paralysis.


Subject(s)
Brain Neoplasms , Neural Networks, Computer , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Machine Learning , Male , Reproducibility of Results
2.
J Healthc Eng ; 2022: 4365855, 2022.
Article in English | MEDLINE | ID: mdl-35449836

ABSTRACT

One of the most prevalent and leading causes of cancer in women is breast cancer. It has now become a frequent health problem, and its prevalence has recently increased. The easiest approach to dealing with breast cancer findings is to recognize them early on. Early detection of breast cancer is facilitated by computer-aided detection and diagnosis (CAD) technologies, which can help people live longer lives. The major goal of this work is to take advantage of recent developments in CAD systems and related methodologies. In 2011, the United States reported that one out of every eight women was diagnosed with cancer. Breast cancer originates as a result of aberrant cell division in the breast, which leads to either benign or malignant cancer formation. As a result, early detection of breast cancer is critical, and with effective treatment, many lives can be saved. This research covers the findings and analyses of multiple machine learning models for identifying breast cancer. The Wisconsin Breast Cancer Diagnostic (WBCD) dataset was used to develop the method. Despite its small size, the dataset provides some interesting data. The information was analyzed and put to use in a number of machine learning models. For prediction, random forest, logistic regression, decision tree, and K-nearest neighbor were utilized. When the results are compared, the logistic regression model is found to offer the best results. Logistic regression achieves 98% accuracy, which is better than the previous method reported.


Subject(s)
Breast Neoplasms , Breast , Breast Neoplasms/diagnosis , Cluster Analysis , Female , Humans , Logistic Models , Machine Learning
3.
Appl Bionics Biomech ; 2022: 6321884, 2022.
Article in English | MEDLINE | ID: mdl-35498140

ABSTRACT

Obstetricians often utilize cardiotocography (CTG) to assess a child's physical health throughout pregnancy because it gives data on the fetal heartbeat and uterine contractions, which helps identify whether the fetus is pathologic or not. Obstetricians have traditionally analyzed CTG data artificially, which takes time and is unreliable. As a result, creating a fetal health classification model is essential, as it may save not only time but also medical resources in the diagnosis process. Machine learning (ML) is currently extensively used in fields such as biology and medicine to address a variety of issues, due to its fast advancement. This research covers the findings and analyses of multiple machine learning models for fetal health classification. The method was developed using the open-access cardiotocography dataset. Although the dataset is modest, it contains some noteworthy values. The data was examined and used in a variety of ML models. For classification, random forest (RF), logistic regression, decision tree (DT), support vector classifier, voting classifier, and K-nearest neighbor were utilized. When the results are compared, it is discovered that the random forest model produces the best results. It achieves 97.51% accuracy, which is better than the previous method reported.

4.
Comput Intell Neurosci ; 2022: 5140148, 2022.
Article in English | MEDLINE | ID: mdl-35528341

ABSTRACT

White blood cells (WBCs) are blood cells that fight infections and diseases as a part of the immune system. They are also known as "defender cells." But the imbalance in the number of WBCs in the blood can be hazardous. Leukemia is the most common blood cancer caused by an overabundance of WBCs in the immune system. Acute lymphocytic leukemia (ALL) usually occurs when the bone marrow creates many immature WBCs that destroy healthy cells. People of all ages, including children and adolescents, can be affected by ALL. The rapid proliferation of atypical lymphocyte cells can cause a reduction in new blood cells and increase the chances of death in patients. Therefore, early and precise cancer detection can help with better therapy and a higher survival probability in the case of leukemia. However, diagnosing ALL is time-consuming and complicated, and manual analysis is expensive, with subjective and error-prone outcomes. Thus, detecting normal and malignant cells reliably and accurately is crucial. For this reason, automatic detection using computer-aided diagnostic models can help doctors effectively detect early leukemia. The entire approach may be automated using image processing techniques, reducing physicians' workload and increasing diagnosis accuracy. The impact of deep learning (DL) on medical research has recently proven quite beneficial, offering new avenues and possibilities in the healthcare domain for diagnostic techniques. However, to make that happen soon in DL, the entire community must overcome the explainability limit. Because of the black box operation's shortcomings in artificial intelligence (AI) models' decisions, there is a lack of liability and trust in the outcomes. But explainable artificial intelligence (XAI) can solve this problem by interpreting the predictions of AI systems. This study emphasizes leukemia, specifically ALL. The proposed strategy recognizes acute lymphoblastic leukemia as an automated procedure that applies different transfer learning models to classify ALL. Hence, using local interpretable model-agnostic explanations (LIME) to assure validity and reliability, this method also explains the cause of a specific classification. The proposed method achieved 98.38% accuracy with the InceptionV3 model. Experimental results were found between different transfer learning methods, including ResNet101V2, VGG19, and InceptionResNetV2, later verified with the LIME algorithm for XAI, where the proposed method performed the best. The obtained results and their reliability demonstrate that it can be preferred in identifying ALL, which will assist medical examiners.


Subject(s)
Artificial Intelligence , Leukemia , Adolescent , Child , Humans , Image Processing, Computer-Assisted/methods , Leukemia/diagnosis , Machine Learning , Reproducibility of Results
5.
Comput Intell Neurosci ; 2022: 6333573, 2022.
Article in English | MEDLINE | ID: mdl-35712068

ABSTRACT

Breast cancer develops when cells in the breast expand and divide uncontrollably, resulting in a lump of tissue known as a tumor. This lump of tissue is called a tumor. After skin cancer, breast cancer is the second most common cancer among women. It is more common in women over the age of 50. Men may also acquire breast cancer, albeit it is uncommon. Each year, approximately 2,600 men in the United States are diagnosed with breast cancer, accounting for less than 1% of all cases. Transgender women are more likely than cisgender men to acquire breast cancer. Additionally, transgender males are less likely than cisgender women to acquire breast cancer. Breast cancer is more common in women over the age of 50, although it can affect anyone at any age. Early detection of a breast tumor may significantly lower the risk of developing breast cancer. A public dataset of breast tumor features was used instead to build models for identifying breast tumors through machine learning and deep learning. Prediction models were built using logistic regression (LR), decision tree (DT), random forest (RF), voting classifier (VC), support vector machine (SVM), and a proprietary convolutional neural network (CNN). These models were used to find critical prognostic indicators linked to breast cancer. The proposed network performs far better, with an average accuracy of 99%. This study has six types of models: LR, RF, SVM, VC, DT, and a custom CNN model. They all had 96% to 99% accuracy in this study. CNN, LR, RF, SVM, VC, and DT achieved 99%, 96%, 98%, 97%, 97%, and 96% F1 score, respectively. There were many machine learning algorithms used in this study that were very accurate, which means that these techniques could be used as alternative prognostic tools in breast tumor detection studies in Asia.


Subject(s)
Breast Neoplasms , Neural Networks, Computer , Algorithms , Breast Neoplasms/diagnosis , Female , Humans , Machine Learning , Male , Support Vector Machine
6.
Comput Math Methods Med ; 2022: 1249692, 2022.
Article in English | MEDLINE | ID: mdl-35509861

ABSTRACT

Breast cancer is one of the most commonly diagnosed female disorders globally. Numerous studies have been conducted to predict survival markers, although the majority of these analyses were conducted using simple statistical techniques. In lieu of that, this research employed machine learning approaches to develop models for identifying and visualizing relevant prognostic indications of breast cancer survival rates. A comprehensive hospital-based breast cancer dataset was collected from the National Cancer Institute's SEER Program's November 2017 update, which offers population-based cancer statistics. The dataset included female patients diagnosed between 2006 and 2010 with infiltrating duct and lobular carcinoma breast cancer (SEER primary cites recode NOS histology codes 8522/3). The dataset included nine predictor factors and one predictor variable that were linked to the patients' survival status (alive or dead). To identify important prognostic markers associated with breast cancer survival rates, prediction models were constructed using K-nearest neighbor (K-NN), decision tree (DT), gradient boosting (GB), random forest (RF), AdaBoost, logistic regression (LR), voting classifier, and support vector machine (SVM). All methods yielded close results in terms of model accuracy and calibration measures, with the lowest achieved from logistic regression (accuracy = 80.57 percent) and the greatest acquired from the random forest (accuracy = 94.64 percent). Notably, the multiple machine learning algorithms utilized in this research achieved high accuracy, suggesting that these approaches might be used as alternative prognostic tools in breast cancer survival studies, especially in the Asian area.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnosis , Female , Humans , Logistic Models , Machine Learning , Prognosis , Support Vector Machine
7.
Comput Math Methods Med ; 2021: 6141470, 2021.
Article in English | MEDLINE | ID: mdl-34899968

ABSTRACT

Chronic kidney disease (CKD) is a major burden on the healthcare system because of its increasing prevalence, high risk of progression to end-stage renal disease, and poor morbidity and mortality prognosis. It is rapidly becoming a global health crisis. Unhealthy dietary habits and insufficient water consumption are significant contributors to this disease. Without kidneys, a person can only live for 18 days on average, requiring kidney transplantation and dialysis. It is critical to have reliable techniques at predicting CKD in its early stages. Machine learning (ML) techniques are excellent in predicting CKD. The current study offers a methodology for predicting CKD status using clinical data, which incorporates data preprocessing, a technique for managing missing values, data aggregation, and feature extraction. A number of physiological variables, as well as ML techniques such as logistic regression (LR), decision tree (DT) classification, and K-nearest neighbor (KNN), were used in this work to train three distinct models for reliable prediction. The LR classification method was found to be the most accurate in this role, with an accuracy of about 97 percent in this study. The dataset that was used in the creation of the technique was the CKD dataset, which was made available to the public. Compared to prior research, the accuracy rate of the models employed in this study is considerably greater, implying that they are more trustworthy than the models used in previous studies as well. A large number of model comparisons have shown their resilience, and the scheme may be inferred from the study's results.


Subject(s)
Machine Learning , Renal Insufficiency, Chronic/diagnosis , Bangladesh , Computational Biology , Databases, Factual , Decision Trees , Early Diagnosis , Humans , Logistic Models , Renal Insufficiency, Chronic/classification
8.
J Healthc Eng ; 2021: 1002799, 2021.
Article in English | MEDLINE | ID: mdl-34868509

ABSTRACT

Deep learning has emerged as a promising technique for a variety of elements of infectious disease monitoring and detection, including tuberculosis. We built a deep convolutional neural network (CNN) model to assess the generalizability of the deep learning model using a publicly accessible tuberculosis dataset. This study was able to reliably detect tuberculosis (TB) from chest X-ray images by utilizing image preprocessing, data augmentation, and deep learning classification techniques. Four distinct deep CNNs (Xception, InceptionV3, InceptionResNetV2, and MobileNetV2) were trained, validated, and evaluated for the classification of tuberculosis and nontuberculosis cases using transfer learning from their pretrained starting weights. With an F1-score of 99 percent, InceptionResNetV2 had the highest accuracy. This research is more accurate than earlier published work. Additionally, it outperforms all other models in terms of reliability. The suggested approach, with its state-of-the-art performance, may be helpful for computer-assisted rapid TB detection.


Subject(s)
COVID-19 , Deep Learning , Tuberculosis , Humans , Neural Networks, Computer , Reproducibility of Results , Tuberculosis/diagnostic imaging
9.
J Healthc Eng ; 2021: 3514821, 2021.
Article in English | MEDLINE | ID: mdl-34956569

ABSTRACT

The World Health Organization (WHO) recognized COVID-19 as the cause of a global pandemic in 2019. COVID-19 is caused by SARS-CoV-2, which was identified in China in late December 2019 and is indeed referred to as the severe acute respiratory syndrome coronavirus-2. The whole globe was hit within several months. As millions of individuals around the world are infected with COVID-19, it has become a global health concern. The disease is usually contagious, and those who are infected can quickly pass it on to others with whom they come into contact. As a result, monitoring is an effective way to stop the virus from spreading further. Another disease caused by a virus similar to COVID-19 is pneumonia. The severity of pneumonia can range from minor to life-threatening. This is particularly hazardous for children, people over 65 years of age, and those with health problems or immune systems that are affected. In this paper, we have classified COVID-19 and pneumonia using deep transfer learning. Because there has been extensive research on this subject, the developed method concentrates on boosting precision and employs a transfer learning technique as well as a model that is custom-made. Different pretrained deep convolutional neural network (CNN) models were used to extract deep features. The classification accuracy was used to measure performance to a great extent. According to the findings of this study, deep transfer learning can detect COVID-19 and pneumonia from CXR images. Pretrained customized models such as MobileNetV2 had a 98% accuracy, InceptionV3 had a 96.92% accuracy, EffNet threshold had a 94.95% accuracy, and VGG19 had a 92.82% accuracy. MobileNetV2 has the best accuracy of all of these models.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Child , Humans , Pandemics , Pneumonia/diagnosis , SARS-CoV-2
10.
Comput Intell Neurosci ; 2021: 2392395, 2021.
Article in English | MEDLINE | ID: mdl-34970309

ABSTRACT

Brain tumors are the most common and aggressive illness, with a relatively short life expectancy in their most severe form. Thus, treatment planning is an important step in improving patients' quality of life. In general, image methods such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound images are used to assess tumors in the brain, lung, liver, breast, prostate, and so on. X-ray images, in particular, are utilized in this study to diagnose brain tumors. This paper describes the investigation of the convolutional neural network (CNN) to identify brain tumors from X-ray images. It expedites and increases the reliability of the treatment. Because there has been a significant amount of study in this field, the presented model focuses on boosting accuracy while using a transfer learning strategy. Python and Google Colab were utilized to perform this investigation. Deep feature extraction was accomplished with the help of pretrained deep CNN models, VGG19, InceptionV3, and MobileNetV2. The classification accuracy is used to assess the performance of this paper. MobileNetV2 had the accuracy of 92%, InceptionV3 had the accuracy of 91%, and VGG19 had the accuracy of 88%. MobileNetV2 has offered the highest level of accuracy among these networks. These precisions aid in the early identification of tumors before they produce physical adverse effects such as paralysis and other impairments.


Subject(s)
Brain Neoplasms , Quality of Life , Brain , Brain Neoplasms/diagnostic imaging , Humans , Male , Neural Networks, Computer , Reproducibility of Results
11.
J Healthc Eng ; 2021: 7633381, 2021.
Article in English | MEDLINE | ID: mdl-34868531

ABSTRACT

Stroke is a medical disorder in which the blood arteries in the brain are ruptured, causing damage to the brain. When the supply of blood and other nutrients to the brain is interrupted, symptoms might develop. According to the World Health Organization (WHO), stroke is the greatest cause of death and disability globally. Early recognition of the various warning signs of a stroke can help reduce the severity of the stroke. Different machine learning (ML) models have been developed to predict the likelihood of a stroke occurring in the brain. This research uses a range of physiological parameters and machine learning algorithms, such as Logistic Regression (LR), Decision Tree (DT) Classification, Random Forest (RF) Classification, and Voting Classifier, to train four different models for reliable prediction. Random Forest was the best performing algorithm for this task with an accuracy of approximately 96 percent. The dataset used in the development of the method was the open-access Stroke Prediction dataset. The accuracy percentage of the models used in this investigation is significantly higher than that of previous studies, indicating that the models used in this investigation are more reliable. Numerous model comparisons have established their robustness, and the scheme can be deduced from the study analysis.


Subject(s)
Stroke , Algorithms , Brain , Humans , Logistic Models , Machine Learning , Stroke/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL