Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(6): 684-694, 2020 06.
Article in English | MEDLINE | ID: mdl-32231301

ABSTRACT

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Senescence/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Nuclear Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cytotoxicity, Immunologic , Gene Expression Profiling , Humans , Membrane Proteins/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nuclear Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Yellow Fever/genetics , Yellow Fever/immunology , Yellow Fever/metabolism , Yellow Fever/virology , Yellow fever virus/immunology
2.
Nature ; 631(8019): 189-198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898278

ABSTRACT

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Subject(s)
COVID-19 , Nasopharynx , SARS-CoV-2 , Single-Cell Analysis , T-Lymphocytes , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Nasopharynx/virology , Nasopharynx/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Interferons/immunology , Interferons/metabolism , Male , Female , Macrophages/immunology , Macrophages/virology , Virus Replication , Epithelial Cells/virology , Epithelial Cells/immunology , Time Factors , Adult
3.
Nutr Health ; 30(1): 5-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37499218

ABSTRACT

Background: Cardiovascular disease is the leading cause of mortality associated with diabetes, which is characterized by chronic hyperglycemia. Low-carbohydrate diet has gained popularity as an intervention in patients with type 2 diabetes mellitus, acting to improve glycemic profile and serum lipids. In its turn, exercise in hypoxia induces specific adaptations, mostly modulated via hypoxia-induced transcription factor signaling cascade, which increases with exposure to altitude, and promotes angiogenesis, glycogen supply, glucose tolerance, and raises GLUT-4 expression. Aim: Given that hyperglycemia decreases HIF-1α and it is better controlled when following a low-carbohydrate diet, this study aims to examine the hypothesis that a combination of both low-carbohydrate diet and chronic exercise in hypoxia in type 2 diabetes mellitus is associated with improved glycemic control and cardiovascular parameters, whose protocol is described. Methods: Patients with type 2 diabetes mellitus (n = 48) will be recruited and randomized into one of the three groups: (a) Control group: Control diet (low-fat and moderate-carbohydrate diet) + exercise in normoxia; (2) exercise in hypoxia group: Control diet + exercise in hypoxia; (3) intervention group: Low-carbohydrate diet (low-carbohydrate and high-fat diet) + exercise in hypoxia. Before and after 8 weeks of interventions, cardiopulmonary tests (Bruce protocol), body composition and blood pressure will be evaluated. Blood samples will be collected to measure hypoxia-induced transcription factor, C-reactive protein, glycemic and lipid profiles. Summary: This will be the first trial to examine the isolated and combined effect of chronic exercise in hypoxia and low-carbohydrate diet in type 2 diabetes mellitus. This trial will help to fill a significant research gap, guide future research and contribute to the combined nutrition and exercise approach to type 2 diabetes mellitus.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Blood Glucose/metabolism , Glycemic Control , Risk Factors , Diet, Carbohydrate-Restricted , Body Composition , Heart Disease Risk Factors , Hypoxia , Transcription Factors/metabolism , Randomized Controlled Trials as Topic
4.
J Sports Sci ; 40(16): 1857-1864, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36101017

ABSTRACT

It is unclear if different bioelectrical impedance (BI) devices provide similar results regarding raw parameters [Resistance (R), Reactance (Xc), Phase Angle (PhA), and Impedance (Z)] for the same population/individual undergoing a weight loss intervention. The aim was to evaluate the cross-sectional and longitudinal agreement of raw data obtained by two BI devices in former athletes with overweight/obesity. Fifty-nine participants [mean (SD): 43.5 (9.2) years, 30.5 (4.0) kg/m2, 42% females] were included. All the assessments were performed before and after a 4-months lifestyle intervention targeting weight loss (WL). BI parameters were assessed at 50 kHz by two devices: a BI spectroscopy (Xitron Technologies, 4200B, San Diego, USA) and a phase-sensitive single-frequency device (BIA 101 AKERN, Florence, Italy). Cross-sectionally, BIS provided lower mean values for all parameters (0.4% for R, 1.6% for Xc, 1.0% for PhA and 0.4% for Z, p <0.001) compared to SF-BIA. In individuals with a WL≥2.5% (n =18), no longitudinal differences were found in any of the raw parameters between devices (p≥0.128) and there was no proportional bias (p≥0.408). Despite small baseline differences in raw BI parameters, both devices agreed in tracking changes over time at the group level but interpretation should be careful at the individual level.


Subject(s)
Body Composition , Weight Loss , Female , Humans , Male , Cross-Sectional Studies , Electric Impedance , Athletes , Life Style
5.
Eat Weight Disord ; 25(5): 1377-1385, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31520301

ABSTRACT

PURPOSE: This study aims at identifying behavioural and psychological pretreatment predictors of 12- and 36-month weight loss in women with overweight/obesity enrolled in a behavioural weight management intervention. METHODS: A sample of 221 women participated in a randomized controlled trial on weight management (n12 month = 184; n36 month = 156). Multiple linear regressions were used to identify pretreatment predictors of successful weight loss, separately for intervention and control groups. Completers-only and baseline observation carried forward analyses were performed. This study is a secondary analysis of data from the 'Promotion of Exercise and Health in Obesity' randomized controlled trial. RESULTS: Fewer weight loss attempts in the last year positively predicted weight loss at 12 months in the intervention group, explaining 6% of the variance. At 36 months, in the intervention group, 20.2% of the variance in weight change was explained by lower eating disinhibition and higher weight-related quality of life in completers-only analyses, while baseline observation carried forward analyses explained only 9.8% of the variance in weight change via higher self-esteem and lower weight loss expectations. In the control group, higher exercise self-efficacy and a more internal weight locus of control predicted weight loss at 36 months, explaining 13.9% of the variance (completers-only analyses). CONCLUSIONS: Previous weight loss attempts were identified as the most efficient pretreatment predictor of 12-month weight loss. Eating disinhibition, weight-related quality of life, self-esteem, weight loss expectations, exercise self-efficacy, and weight locus of control seem to be key factors for long-term success. LEVEL OF EVIDENCE: Level I, randomized controlled trial. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00513084.


Subject(s)
Quality of Life , Weight Loss , Exercise , Female , Humans , Obesity/therapy , Overweight/therapy
6.
J Immunol ; 194(7): 3463-74, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25712213

ABSTRACT

Mesenchymal stromal cells (MSCs) are inherently tumor homing and can be isolated, expanded, and transduced, making them viable candidates for cell therapy. This tumor tropism has been used to deliver anticancer therapies to various tumor models. In this study, we sought to discover which molecules are the key effectors of human MSC tumor homing in vitro and using an in vivo murine model. In this study, we discover a novel role for macrophage migration inhibitory factor (MIF) as the key director of MSC migration and infiltration toward tumor cells. We have shown this major role for MIF using in vitro migration and invasion assays, in presence of different receptor inhibitors and achieving a drastic decrease in both processes using MIF inhibitor. Additionally, we demonstrate physical interaction between MIF and three receptors: CXCR2, CXCR4, and CD74. CXCR4 is the dominant receptor used by MIF in the homing tumor context, although some signaling is observed through CXCR2. We demonstrate downstream activation of the MAPK pathway necessary for tumor homing. Importantly, we show that knockdown of either CXCR4 or MIF abrogates MSC homing to tumors in an in vivo pulmonary metastasis model, confirming the in vitro two-dimensional and three-dimensional assays. This improved understanding of MSC tumor tropism will further enable development of novel cellular therapies for cancers.


Subject(s)
Chemotaxis/genetics , Chemotaxis/immunology , Macrophage Migration-Inhibitory Factors/genetics , Mesenchymal Stem Cells/metabolism , Neoplasms/genetics , Neoplasms/immunology , Receptors, CXCR4/genetics , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Line, Tumor , Chemotaxis/drug effects , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Gene Expression Profiling , Gene Knockdown Techniques , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Mesenchymal Stem Cells/drug effects , Neoplasms/metabolism , Protein Binding , Proto-Oncogene Proteins c-raf/metabolism , Receptors, CXCR4/metabolism , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism , Signal Transduction , Spheroids, Cellular , Tumor Cells, Cultured
7.
Am J Respir Crit Care Med ; 194(2): 156-68, 2016 07 15.
Article in English | MEDLINE | ID: mdl-26840431

ABSTRACT

RATIONALE: Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts. OBJECTIVES: To define a scalable cell culture system to deliver airway epithelium to clinical grafts. METHODS: Human respiratory epithelial cells derived from endobronchial biopsies were cultured using a combination of mitotically inactivated fibroblasts and Rho-associated protein kinase (ROCK) inhibition using Y-27632 (3T3+Y). Cells were analyzed by immunofluorescence, quantitative polymerase chain reaction, and flow cytometry to assess airway stem cell marker expression. Karyotyping and multiplex ligation-dependent probe amplification were performed to assess cell safety. Differentiation capacity was tested in three-dimensional tracheospheres, organotypic cultures, air-liquid interface cultures, and an in vivo tracheal xenograft model. Ciliary function was assessed in air-liquid interface cultures. MEASUREMENTS AND MAIN RESULTS: 3T3-J2 feeder cells and ROCK inhibition allowed rapid expansion of airway basal cells. These cells were capable of multipotent differentiation in vitro, generating both ciliated and goblet cell lineages. Cilia were functional with normal beat frequency and pattern. Cultured cells repopulated tracheal scaffolds in a heterotopic transplantation xenograft model. CONCLUSIONS: Our method generates large numbers of functional airway basal epithelial cells with the efficiency demanded by clinical transplantation, suggesting its suitability for use in tracheal reconstruction.


Subject(s)
Epithelial Cells/metabolism , Respiratory Tract Diseases/therapy , Stem Cells/metabolism , Tissue Engineering/methods , Cell Differentiation/physiology , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Humans , Mucociliary Clearance/physiology , Polymerase Chain Reaction , Respiratory Mucosa/physiology
8.
Proteins ; 84(12): 1836-1843, 2016 12.
Article in English | MEDLINE | ID: mdl-27667125

ABSTRACT

Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc.


Subject(s)
Coenzymes/chemistry , Cysteine/chemistry , Electrons , Flavin-Adenine Dinucleotide/chemistry , Selenocysteine/chemistry , Thioredoxin Reductase 1/chemistry , Amino Acid Motifs , Electron Transport , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Monte Carlo Method , Mutation , Oxidation-Reduction , Poisson Distribution , Protein Domains , Protein Structure, Secondary , Static Electricity , Water/chemistry
9.
Mol Pharm ; 12(3): 898-909, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25590860

ABSTRACT

Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Isoniazid/analogs & derivatives , Acylation , Amino Acid Substitution , Bacterial Proteins/chemistry , Biopharmaceutics , Catalase/chemistry , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Humans , Isoniazid/chemistry , Isoniazid/metabolism , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Protein Binding , Protein Conformation , Static Electricity
10.
Thorax ; 69(6): 548-57, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24550057

ABSTRACT

BACKGROUND: Squamous cell carcinoma of the lung is a common cancer with 95% mortality at 5 years. These cancers arise from preinvasive lesions, which have a natural history of development progressing through increasing severity of dysplasia to carcinoma in situ (CIS), and in some cases, ending in transformation to invasive carcinoma. Synchronous preinvasive lesions identified at autopsy have been previously shown to be clonally related. METHODS: Using autofluorescence bronchoscopy that allows visual observation of preinvasive lesions within the upper airways, together with molecular profiling of biopsies using gene sequencing and loss-of-heterozygosity analysis from both preinvasive lesions and from intervening normal tissue, we have monitored individual lesions longitudinally and documented their visual, histological and molecular relationship. RESULTS: We demonstrate that rather than forming a contiguous field of abnormal tissue, clonal CIS lesions can develop at multiple anatomically discrete sites over time. Further, we demonstrate that patients with CIS in the trachea have invariably had previous lesions that have migrated proximally, and in one case, into the other lung over a period of 12 years. CONCLUSIONS: Molecular information from these unique biopsies provides for the first time evidence that field cancerisation of the upper airways can occur through cell migration rather than via local contiguous cellular expansion as previously thought. Our findings urge a clinical strategy of ablating high-grade premalignant airway lesions with subsequent attentive surveillance for recurrence in the bronchial tree.


Subject(s)
Carcinoma in Situ , Carcinoma, Squamous Cell , Cell Movement , Lung Neoplasms , Mutation , Precancerous Conditions , Tracheal Neoplasms , Adult , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Genes, p53 , Humans , Loss of Heterozygosity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Tracheal Neoplasms/genetics , Tracheal Neoplasms/pathology
11.
J Pathol ; 229(4): 608-20, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23208928

ABSTRACT

Epidermal growth factor receptor (EGFR) pathway activation is a frequent event in human carcinomas. Mutations in EGFR itself are, however, rare, and the mechanisms regulating EGFR activation remain elusive. Leucine-rich immunoglobulin repeats-1 (LRIG1), an inhibitor of EGFR activity, is one of four genes identified that predict patient survival across solid tumour types including breast, lung, melanoma, glioma, and bladder. We show that deletion of Lrig1 is sufficient to promote murine airway hyperplasia through loss of contact inhibition and that re-expression of LRIG1 in human lung cancer cells inhibits tumourigenesis. LRIG1 regulation of contact inhibition occurs via ternary complex formation with EGFR and E-cadherin with downstream modulation of EGFR activity. We find that LRIG1 LOH is frequent across cancers and its loss is an early event in the development of human squamous carcinomas. Our findings imply that the early stages of squamous carcinoma development are driven by a change in amplitude of EGFR signalling governed by the loss of contact inhibition.


Subject(s)
Cadherins/metabolism , Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Precancerous Conditions/genetics , Animals , Cadherins/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Contact Inhibition , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Homeostasis , Humans , Loss of Heterozygosity , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multiprotein Complexes , Nerve Tissue Proteins/metabolism , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Sequence Deletion , Signal Transduction
12.
Int J Food Sci Nutr ; 65(2): 151-63, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24180469

ABSTRACT

Exhaustive or unaccustomed intense exercise can cause exercise-induced muscle damage (EIMD) and its undesirable consequences may decrease the ability to exercise and to adhere to a training programme. This review briefly summarises the muscle damage process, focusing predominantly on oxidative stress and inflammation as contributing factors, and describes how nutrition may be positively used to recover from EIMD. The combined intake of carbohydrates and proteins and the use of antioxidants and/or anti-inflammatory nutrients within physiological ranges are interventions that may assist the recovery process. Although the works studying food instead of nutritional supplements are very scarce, their results seem to indicate that food might be a favourable option as a recovery strategy. To date, the only tested foods were milk, cherries, blueberries and pomegranate with promising results. Other potential solutions are foods rich in protein, carbohydrates, antioxidants and/or anti-inflammatory nutrients.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Dietary Carbohydrates/therapeutic use , Dietary Proteins/therapeutic use , Exercise/physiology , Muscle, Skeletal , Muscular Diseases/diet therapy , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Dietary Carbohydrates/pharmacology , Dietary Proteins/pharmacology , Dietary Supplements , Humans , Inflammation/diet therapy , Muscle, Skeletal/pathology , Oxidative Stress
13.
Med Probl Perform Art ; 28(3): 119-23, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24013282

ABSTRACT

Proper nutrition, not simply adequate energetic intake, is needed to achieve optimal dance performance. However, little scientific research exists concerning nutrition in dance, and so, to propose nutritional guidelines for this field, recommendations need to be based mainly on studies done in other physically active groups. To diminish the risk of energy imbalance and associated disorders, dancers must consume at least 30 kcal/kg fat-free mass/day, plus the training energy expenditure. For macronutrients, a daily intake of 3 to 5 g carbohydrates/kg, 1.2 to 1.7 g protein/kg, and 20 to 35% of energy intake from fat can be recommended. Dancers may be at increased risk of poor micronutrient status due to their restricted energy intake; micronutrients that deserve concern are iron, calcium, and vitamin D. During training, dancers should give special attention to fluid and carbohydrate intake in order to maintain optimal cognition, motivation, and motor skill performance. For competition/stage performance preparation, it is also important to ensure that an adequate dietary intake is being achieved. Nutritional supplements that may help in achieving specific nutritional goals when dietary intake is inadequate include multivitamins and mineral, iron, calcium, and vitamin D supplements, sports drinks, sports bars, and liquid meal supplements. Caffeine can also be used as an ergogenic aid. It is important that dancers seek dietary advice from qualified specialists, since the pressure to maintain a low body weight and low body fat levels is high, especially in styles as ballet, and this can lead to an unbalanced diet and health problems if not correctly supervised.


Subject(s)
Athletic Performance/physiology , Dancing/physiology , Diet/statistics & numerical data , Dietary Supplements/statistics & numerical data , Energy Intake , Malnutrition/prevention & control , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Fiber/administration & dosage , Exercise , Female , Humans , Male , Nutritional Status , Physical Endurance
14.
Front Sports Act Living ; 5: 1230969, 2023.
Article in English | MEDLINE | ID: mdl-37637220

ABSTRACT

Introduction and objectives: Dietary supplements are part of the nutritional strategies frequently applied in sports performance support. With growing research on this subject and high demand from athletes, nutritionists need to keep up to date with the latest evidence and utility of dietary supplements, particularly in real-world contexts. As information about the use of dietary supplements among elite soccer players is still scarce, this work aimed to know how nutritionists working with elite soccer teams perceive and use these substances in their daily practice. Methods: A questionnaire previously used to describe nutritionists' beliefs and attitudes regarding the use of dietary supplements in a clinical context was adapted for this study. The online questionnaire was addressed to nutritionists working with elite soccer teams from six European Leagues and Brazil, between November 2022 and February 2023. Results: Overall, the participants considered themselves well-trained (76.9%), knowledgeable (95.4%), and interested in dietary supplements (95.4%). The majority (70.8%) of the participants agreed or strongly agreed to recommend dietary supplements to soccer players. Personal usage of dietary supplements was associated with recommending supplements (p < 0.001), but no relationships were found with years of experience and academic level. Discussion: Nutritionists working with elite soccer players consider the use of dietary supplements for performance-enhancement purposes and not only to compensate for nutritional deficits, which might contribute to their higher interest, training and perceived knowledge about this topic. Participants recognize players' interest in dietary supplements, and are mindful of the safety and efficacy of these products. The present study suggests that nutritionists working with elite soccer teams are among the highest prescribers of dietary supplements, although personal usage is lower than that of nutritionists working in a clinical context.

15.
J Int Soc Sports Nutr ; 20(1): 2236060, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37462346

ABSTRACT

Dietary supplements are widely used among athletes, and soccer players are no exception. Nevertheless, evidence supporting the use of dietary supplements aiming to enhance performance in soccer is somewhat contradictory, scarce, or even nonexistent. Thus, the present study aimed to systematically review and synthesize the effects of dietary supplements on athletic performance (e.g. distance covered, sprinting, jump performance) in elite soccer players. Studies enrolling highly trained, elite, and world-class soccer players using dietary supplements were searched in MEDLINE/PubMed, Web of Science, Scopus, and EBSCO databases in June 2022. In total, 1043 studies were identified, and 18 met the eligibility criteria. The studies evaluated the impacts on athletic performance of several dietary supplements, including caffeine, creatine, protein, beverages with carbohydrates and electrolytes, tart cherry juice, nitrate-rich beetroot juice, sodium bicarbonate with minerals, yohimbine, and a proprietary nutraceutical blend. Caffeine supplementation in doses between 3 and 6 mg/kg of body mass may improve jump height and sprint ability, particularly in female players, but individual response to caffeine must be considered. Creatine may improve sprint, agility, and in female players, jump performance. Protein supplementation can improve sprint and jump performance between matches, especially if protein ingested from food is not up to recommendations. Beverages containing carbohydrates and electrolytes can be used as part of the strategies to achieve carbohydrate intake during training and match-days but used alone do not benefit athletic performance. Tart cherry juice might be useful for maintaining athletic performance after matches that produce higher force loss and exercise-induced muscle damage, although polyphenols from the diet might attenuate the effects of tart cherry supplementation. Nitrate-rich beetroot concentrate can attenuate performance decrease in the days following matches. Further investigation with sodium bicarbonate alone is necessary, as supplementation protocols with elite players included other substances. Finally, the available data does not support yohimbine supplementation or the use of Resurgex Plus® to improve athletic performance in elite soccer players. Still, more well-designed research with elite soccer players is needed to improve support and advice regarding the use of dietary supplements for athletic performance enhancement.


Subject(s)
Athletic Performance , Soccer , Humans , Female , Soccer/physiology , Caffeine/pharmacology , Sodium Bicarbonate , Creatine/pharmacology , Nitrates , Athletic Performance/physiology , Dietary Supplements , Electrolytes , Carbohydrates
16.
PLoS One ; 18(11): e0294131, 2023.
Article in English | MEDLINE | ID: mdl-37956119

ABSTRACT

BACKGROUND: Adaptive thermogenesis, defined as the decrease in the energy expenditure components beyond what can be predicted by changes in body mass stores, has been studied as a possible barrier to weight loss and weight maintenance. Intermittent energy restriction (IER), using energy balance refeeds, has been pointed out as a viable strategy to reduce adaptive thermogenesis and improve weight loss efficiency (greater weight loss per unit of energy deficit), as an alternative to a continuous energy restriction (CER). Following a randomized clinical trial design, the BREAK Study aims to compare the effects of IER versus CER on body composition and in adaptive thermogenesis, and understand whether participants will successfully maintain their weight loss after 12 months. METHODS: Seventy-four women with obesity and inactive (20-45 y) will be randomized to 16 weeks of CER or IER (8x2 weeks of energy restriction interspersed with 7x1 week in energy balance). Both groups will start with 2 weeks in energy balance before energy restriction, followed by 16 weeks in energy restriction, then 8 weeks in energy balance and finally a 12-month weight maintenance phase. Primary outcomes are changes in fat-mass and adaptive thermogenesis after weight loss and weight maintenance. Secondary outcomes include weight loss, fat-free mass preservation, alterations in energy expenditure components, and changes in hormones (thyroid function, insulin, leptin, and cortisol). DISCUSSION: We anticipate that The BREAK Study will allow us to better understand adaptive thermogenesis during weight loss and weight maintenance, in women with obesity. These findings will enable evidence-based decisions for obesity treatment. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05184361.


Subject(s)
Caloric Restriction , Obesity , Humans , Female , Weight Loss , Energy Metabolism , Thermogenesis , Body Composition , Randomized Controlled Trials as Topic
17.
J Sports Med Phys Fitness ; 63(1): 53-59, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35415998

ABSTRACT

BACKGROUND: To analyze whether pre-exercise CHO+PRO vs. CHO intake distinctly influences running performance and metabolic biomarkers along a various of exercise intensities. METHODS: In a randomized, double blind, counterbalanced, crossover and placebo control design, 10 middle distance runners were tested in 3 occasions. After 10 h of fasting, participants ingested isovolumic beverages (0.75+0.25g·BW-1 of CHO+PRO, 1.0g·BW-1 of CHO and placebo control) 30 min before a treadmill running incremental protocol of 4 min steps until exhaustion. Venous blood was collected at fasting, 30 min after beverage ingestion and after the 3rd and 7th running steps. Oxygen uptake-related variables, including respiratory exchange ratio, heart rate, plasma glucose, insulin, glucagon, free fatty acids, blood lactate concentrations, gastrointestinal discomfort and rate of perceived exertion were measured. RESULTS: The addition of PRO to CHO had no influence on the measured variables, which did not differ between conditions along all incremental protocol intensities. The intake of CHO+PRO (compared to CHO) tended to decrease glycemia (106.5±21.3 vs. 113.6±26.5) and to increase insulinemia (14.4±15.1 vs. 12.7±10.8) at intensities close to maximum oxygen uptake. CONCLUSIONS: The addition of PRO to a pre-exercise CHO beverage had no impact on running performance and related metabolic variables at a wide spectrum of exercise intensities.


Subject(s)
Oxygen Consumption , Running , Humans , Physical Endurance/physiology , Dietary Carbohydrates , Blood Glucose/metabolism , Oxygen , Running/physiology , Beverages , Lactic Acid , Double-Blind Method
18.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100545

ABSTRACT

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Subject(s)
Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
19.
J Biol Inorg Chem ; 17(4): 543-55, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22286956

ABSTRACT

Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways.


Subject(s)
Computational Biology , Hydrogenase/chemistry , Molecular Dynamics Simulation , Crystallography, X-Ray , Hydrogen/chemistry , Hydrogenase/metabolism , Models, Molecular , Protein Conformation
20.
Front Nutr ; 9: 934438, 2022.
Article in English | MEDLINE | ID: mdl-35938106

ABSTRACT

Introduction: The effects of dietary protein on body composition and physical performance seemingly depend on the essential amino acid profile of the given protein source, although controversy exists about whether animal protein sources may possess additional anabolic properties to plant-based protein sources. Purpose: To compare the effects of a novel plant-based protein matrix and whey protein supplementation on body composition, strength, power, and endurance performance of trained futsal players. Methods: Fifty male futsal players were followed during 8 weeks of supplementation, with 40 completing the study either with plant-based protein (N = 20) or whey protein (N = 20). The following measures were assessed: bone mineral content, lean body mass, and fat mass; muscle thickness of the rectus femoris; total body water; blood glucose, hematocrit, C-reactive protein, aspartate aminotransferase, alanine aminotransferase, creatine kinase, creatinine, and estimated glomerular filtration rate; salivary cortisol; maximal strength and 1-RM testing of the back squat and bench press exercises; muscle power and countermovement jump; VO2max and maximal aerobic speed. Subjects were asked to maintain regular dietary habits and record dietary intake every 4 weeks through 3-day food records. Results: No differences in any variable were observed between groups at baseline or pre- to post-intervention. Moreover, no time*group interaction was observed in any of the studied variables, and a time effect was only observed regarding fat mass reduction. Conclusions: Supplementing with either a novel plant-based protein matrix or whey protein did not affect any of the variables assessed in high-level futsal players over 8 wks. These results suggest that whey protein does not possess any unique anabolic properties over and above those of plant-based proteins when equated to an essential amino acid profile in the population studied. Furthermore, when consuming a daily protein intake >1.6 g/kg BW.day-1, additional protein supplementation does not affect body composition or performance in trained futsal players, regardless of protein type/source.

SELECTION OF CITATIONS
SEARCH DETAIL