ABSTRACT
Force networks play an important role in the stability of configurations when granular material is packed into a container. These networks can redirect part of the weight of grains inside a container to the side walls. We employ monodisperse stress-birefringent spheres to visualize the contact forces in a quasi-2D and a nearly-2D configuration of these spheres in a thin cuboid cell. The packing structures are particularly simple: a hexagonal lattice in the ground state when the cell width is equal to the sphere diameter, and a frustrated, slightly distorted lattice in thicker cells. The force redistribution is substantially changed by this geometrical modification. In both cases, we observe an 'inverse' Janssen effect with the pressure decreasing from the top to the bottom of the container when the material is loaded with a weight on top of the vessel.
ABSTRACT
Elastic properties of a granular packing show a nonlinear behavior determined by its discrete structure and nonlinear inter-grain force laws. Acoustic waves show a transition from constant, pressure-dependent sound speed to a shock-wave-like behavior with an amplitude-determined propagation speed. This becomes increasingly visible at low static confinement pressure as the transient regime shifts to lower wave amplitudes for lower static pressure. In microgravity, confinement pressure can be orders of magnitude lower than in a ground-based experiment. In addition, the absence of hydrostatic gradients allows for much more homogeneous and isotropic pressure distribution. We present a novel apparatus for acoustic wave transmission measurements at such low packing pressures. A pressure control loop is implemented by using a microcontroller that monitors static force sensor readings and adjusts the position of a movable wall with a linear-motor until the desired pressure is reached. Measurements of acoustic waves are possible using accelerometers embedded in the granular packing as well as piezos. For excitation, we use a voice-coil-driven wall, with a large variety of signal shapes, frequencies, and amplitudes. This enables experiments in both the linear and strongly nonlinear regimes.