Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Mol Cell ; 84(2): 277-292.e9, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38183983

ABSTRACT

iRhoms are pseudoprotease members of the rhomboid-like superfamily and are cardinal regulators of inflammatory and growth factor signaling; they function primarily by recognizing transmembrane domains of their clients. Here, we report a mechanistically distinct nuclear function of iRhoms, showing that both human and mouse iRhom2 are non-canonical substrates of signal peptidase complex (SPC), the protease that removes signal peptides from secreted proteins. Cleavage of iRhom2 generates an N-terminal fragment that enters the nucleus and modifies the transcriptome, in part by binding C-terminal binding proteins (CtBPs). The biological significance of nuclear iRhom2 is indicated by elevated levels in skin biopsies of patients with psoriasis, tylosis with oesophageal cancer (TOC), and non-epidermolytic palmoplantar keratoderma (NEPPK); increased iRhom2 cleavage in a keratinocyte model of psoriasis; and nuclear iRhom2 promoting proliferation of keratinocytes. Overall, this work identifies an unexpected SPC-dependent ER-to-nucleus signaling pathway and demonstrates that iRhoms can mediate nuclear signaling.


Subject(s)
Psoriasis , Signal Transduction , Animals , Humans , Mice , Carrier Proteins/genetics , Carrier Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Psoriasis/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
2.
Mol Cell ; 81(12): 2640-2655.e8, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34019811

ABSTRACT

ARH3/ADPRHL2 and PARG are the primary enzymes reversing ADP-ribosylation in vertebrates, yet their functions in vivo remain unclear. ARH3 is the only hydrolase able to remove serine-linked mono(ADP-ribose) (MAR) but is much less efficient than PARG against poly(ADP-ribose) (PAR) chains in vitro. Here, by using ARH3-deficient cells, we demonstrate that endogenous MARylation persists on chromatin throughout the cell cycle, including mitosis, and is surprisingly well tolerated. Conversely, persistent PARylation is highly toxic and has distinct physiological effects, in particular on active transcription histone marks such as H3K9ac and H3K27ac. Furthermore, we reveal a synthetic lethal interaction between ARH3 and PARG and identify loss of ARH3 as a mechanism of PARP inhibitor resistance, both of which can be exploited in cancer therapy. Finally, we extend our findings to neurodegeneration, suggesting that patients with inherited ARH3 deficiency suffer from stress-induced pathogenic increase in PARylation that can be mitigated by PARP inhibition.


Subject(s)
Glycoside Hydrolases/metabolism , Poly ADP Ribosylation/physiology , ADP-Ribosylation , Adenosine Diphosphate Ribose/metabolism , Cell Line, Tumor , Chromatin , DNA , DNA Damage , Fibroblasts/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/physiology , HEK293 Cells , HeLa Cells , Humans , Poly Adenosine Diphosphate Ribose/metabolism , Primary Cell Culture
3.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30449723

ABSTRACT

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Subject(s)
Cell Proliferation , Cellular Senescence , DNA Damage , DNA Replication , DNA, Neoplasm/biosynthesis , RNA, Long Noncoding/metabolism , RNA, Neoplasm/metabolism , Transcription Factors/metabolism , Uterine Neoplasms/metabolism , Animals , Chromatin Assembly and Disassembly , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , DNA, Neoplasm/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation, Neoplastic , HeLa Cells , Histones/metabolism , Humans , Methylation , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , RNA Stability , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , Transcription Factors/genetics , Transcription, Genetic , Uterine Neoplasms/genetics
4.
EMBO Rep ; 23(10): e54520, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35980303

ABSTRACT

CDK9 is a kinase critical for the productive transcription of protein-coding genes by RNA polymerase II (pol II). As part of P-TEFb, CDK9 phosphorylates the carboxyl-terminal domain (CTD) of pol II and elongation factors, which allows pol II to elongate past the early elongation checkpoint (EEC) encountered soon after initiation. We show that, in addition to halting pol II at the EEC, loss of CDK9 activity causes premature termination of transcription across the last exon, loss of polyadenylation factors from chromatin, and loss of polyadenylation of nascent transcripts. Inhibition of the phosphatase PP2A abrogates the premature termination and loss of polyadenylation caused by CDK9 inhibition, indicating that this kinase/phosphatase pair regulates transcription elongation and RNA processing at the end of protein-coding genes. We also confirm the splicing factor SF3B1 as a target of CDK9 and show that SF3B1 in complex with polyadenylation factors is lost from chromatin after CDK9 inhibition. These results emphasize the important roles that CDK9 plays in coupling transcription elongation and termination to RNA maturation downstream of the EEC.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Chromatin/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA , RNA Polymerase II/metabolism , RNA Splicing Factors/genetics , Transcription, Genetic , mRNA Cleavage and Polyadenylation Factors/genetics
5.
Nucleic Acids Res ; 48(14): 7712-7727, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32805052

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


Subject(s)
Cyclin-Dependent Kinases/physiology , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Chromatin/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , HEK293 Cells , Humans , Mutation , Phosphorylation , RNA/biosynthesis , RNA Polymerase II/chemistry , Sequence Analysis, RNA , Serine/metabolism , Transcriptional Elongation Factors/metabolism
6.
EMBO J ; 36(7): 934-948, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28254838

ABSTRACT

The 7SK small nuclear RNP (snRNP), composed of the 7SK small nuclear RNA (snRNA), MePCE, and Larp7, regulates the mRNA elongation capacity of RNA polymerase II (RNAPII) through controlling the nuclear activity of positive transcription elongation factor b (P-TEFb). Here, we demonstrate that the human 7SK snRNP also functions as a canonical transcription factor that, in collaboration with the little elongation complex (LEC) comprising ELL, Ice1, Ice2, and ZC3H8, promotes transcription of RNAPII-specific spliceosomal snRNA and small nucleolar RNA (snoRNA) genes. The 7SK snRNA specifically associates with a fraction of RNAPII hyperphosphorylated at Ser5 and Ser7, which is a hallmark of RNAPII engaged in snRNA synthesis. Chromatin immunoprecipitation (ChIP) and chromatin isolation by RNA purification (ChIRP) experiments revealed enrichments for all components of the 7SK snRNP on RNAPII-specific sn/snoRNA genes. Depletion of 7SK snRNA or Larp7 disrupts LEC integrity, inhibits RNAPII recruitment to RNAPII-specific sn/snoRNA genes, and reduces nascent snRNA and snoRNA synthesis. Thus, through controlling both mRNA elongation and sn/snoRNA synthesis, the 7SK snRNP is a key regulator of nuclear RNA production by RNAPII.


Subject(s)
Gene Expression Regulation , RNA, Small Nuclear/biosynthesis , Ribonucleoproteins/metabolism , Transcription Factors/metabolism , Chromatin Immunoprecipitation , HeLa Cells , Humans , RNA Polymerase II/metabolism
7.
Nucleic Acids Res ; 47(1): 122-133, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30329085

ABSTRACT

Transposons impart dynamism to the genomes they inhabit and their movements frequently rewire the control of nearby genes. Occasionally, their proteins are domesticated when they evolve a new function. SETMAR is a protein methylase with a sequence-specific DNA binding domain. It began to evolve about 50 million years ago when an Hsmar1 transposon integrated downstream of a SET-domain methylase gene. Here we show that the DNA-binding domain of the transposase targets the enzyme to transposon-end remnants and that this is capable of regulating gene expression, dependent on the methylase activity. When SETMAR was modestly overexpressed in human cells, almost 1500 genes changed expression by more than 2-fold (65% up- and 35% down-regulated). These genes were enriched for the KEGG Pathways in Cancer and include several transcription factors important for development and differentiation. Expression of a similar level of a methylase-deficient SETMAR changed the expression of many fewer genes, 77% of which were down-regulated with no significant enrichment of KEGG Pathways. Our data is consistent with a model in which SETMAR is part of an anthropoid primate-specific regulatory network centered on the subset of genes containing a transposon end.


Subject(s)
DNA-Binding Proteins/genetics , Histone Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/genetics , Transcriptome/genetics , Animals , DNA Transposable Elements/genetics , DNA-Binding Proteins/chemistry , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Histone Methyltransferases/chemistry , Histones/genetics , Humans , Methylation , Neoplasms/genetics , Primates/genetics , Signal Transduction/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
8.
Nucleic Acids Res ; 46(18): 9637-9646, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30184164

ABSTRACT

Cut-and-paste transposons are important tools for mutagenesis, gene-delivery and DNA sequencing applications. At the molecular level, the most thoroughly understood are Tn5 and Tn10 in bacteria, and mariner and hAT elements in eukaryotes. All bacterial cut-and-paste transposases characterized to date are monomeric prior to interacting with the transposon end, while all eukaryotic transposases are multimers. Although there is a limited sample size, we proposed that this defines two pathways for transpososome assembly which distinguishes the mechanism of the bacterial and eukaryotic transposons. We predicted that the respective pathways would dictate how the rate of transposition is related to transposase concentration and genome size. Here, we have tested these predictions by creating a single-chain dimer version of the bacterial Tn5 transposase. We show that artificial dimerization switches the transpososome assembly pathway from the bacterial-style to the eukaryotic-style. Although this had no effect in vitro, where the transposase does not have to search far to locate the transposon ends, it increased the rate of transposition in bacterial and HeLa cell assays. However, in contrast to the mariner elements, the Tn5 single-chain dimer remained unaffected by over-production inhibition, which is an emergent property of the transposase subunit structure in the mariner elements.


Subject(s)
DNA Transposable Elements/genetics , Eukaryotic Cells/metabolism , Genome Size , Prokaryotic Cells/metabolism , Transposases/genetics , Base Sequence , DNA Cleavage , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Kinetics , Mutagenesis, Insertional , Mutation , Protein Multimerization , Transposases/chemistry , Transposases/metabolism
9.
RNA Biol ; 13(3): 265-71, 2016.
Article in English | MEDLINE | ID: mdl-26853452

ABSTRACT

Cyclin-dependent kinases play critical roles in transcription by RNA polymerase II (pol II) and processing of the transcripts. For example, CDK9 regulates transcription of protein-coding genes, splicing, and 3' end formation of the transcripts. Accordingly, CDK9 inhibitors have a drastic effect on the production of mRNA in human cells. Recent analyses indicate that CDK9 regulates transcription at the early-elongation checkpoint of the vast majority of pol II-transcribed genes. Our recent discovery of an additional CDK9-regulated elongation checkpoint close to poly(A) sites adds a new layer to the control of transcription by this critical cellular kinase. This novel poly(A)-associated checkpoint has the potential to powerfully regulate gene expression just before a functional polyadenylated mRNA is produced: the point of no return. However, many questions remain to be answered before the role of this checkpoint becomes clear. Here we speculate on the possible biological significance of this novel mechanism of gene regulation and the players that may be involved.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Polyadenylation , Transcription Elongation, Genetic , Cell Cycle Checkpoints , Gene Expression Regulation , Humans , RNA Polymerase II/metabolism , RNA, Messenger/metabolism
10.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352431

ABSTRACT

Regulation of RNA polymerase II (Pol II) transcription is closely associated with cell proliferation. However, it remains unclear how the Pol II transcription program is altered in cancer to favour cell growth. Here, we find that gene expression of NELFCD , a known negative elongation factor, is up-regulated in colorectal tumours. To dissect the direct role of NELF-C on Pol II transcription in such cancer, we employed an auxin-dependent protein degradation system for NELF-C in combination with nascent transcript sequencing technologies. Strikingly, we demonstrated that the acute loss of NELF-C protein globally perturbs Pol II transcription termination and also increases transcription elongation rate, independently of promoter-proximal Pol II pausing. This results in Pol II transcription into DNA replication initiation zones, and may link to failure of the cell cycle transition into S phase. We anticipate that NELF will be a potential therapeutic target to restrict colorectal cancers by promoting transcription-replication conflict. HIGHLIGHTS: Expression of NELFCD transcript is up-regulated in colorectal tumors NELF-C protein is mandatory for the transition between G1-S phases during cell cycleNELF-C loss impairs transcription termination independently of Pol II promoter-proximal pausingNELF-C loss leads Pol II to invade DNA replication initiation zones.

11.
NAR Genom Bioinform ; 5(2): lqad059, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37305169

ABSTRACT

Transcription and co-transcriptional processes, including pre-mRNA splicing and mRNA cleavage and polyadenylation, regulate the production of mature mRNAs. The carboxyl terminal domain (CTD) of RNA polymerase (pol) II, which comprises 52 repeats of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 peptide, is involved in the coordination of transcription with co-transcriptional processes. The pol II CTD is dynamically modified by protein phosphorylation, which regulates recruitment of transcription and co-transcriptional factors. We have investigated whether mature mRNA levels from intron-containing protein-coding genes are related to pol II CTD phosphorylation, RNA stability, and pre-mRNA splicing and mRNA cleavage and polyadenylation efficiency. We find that genes that produce a low level of mature mRNAs are associated with relatively high phosphorylation of the pol II CTD Thr4 residue, poor RNA processing, increased chromatin association of transcripts, and shorter RNA half-life. While these poorly-processed transcripts are degraded by the nuclear RNA exosome, our results indicate that in addition to RNA half-life, chromatin association due to a low RNA processing efficiency also plays an important role in the regulation of mature mRNA levels.

12.
Cell Death Dis ; 14(2): 84, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746936

ABSTRACT

Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Repressor Proteins/metabolism , Inhibitor of Apoptosis Proteins/metabolism , CD8-Positive T-Lymphocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasms/genetics , Autoimmune Diseases/genetics , Cell Line, Tumor
13.
Front Immunol ; 14: 1182525, 2023.
Article in English | MEDLINE | ID: mdl-37359548

ABSTRACT

Introduction: Macrophages are essential cells of the immune system that alter their inflammatory profile depending on their microenvironment. Alternative polyadenylation in the 3'UTR (3'UTR-APA) and intronic polyadenylation (IPA) are mechanisms that modulate gene expression, particularly in cancer and activated immune cells. Yet, how polarization and colorectal cancer (CRC) cells affect 3'UTR-APA and IPA in primary human macrophages was unclear. Methods: In this study, we isolated primary human monocytes from healthy donors, differentiated and polarized them into a pro-inflammatory state and performed indirect co-cultures with CRC cells. ChrRNA-Seq and 3'RNA-Seq was performed to quantify gene expression and characterize new 3'UTR-APA and IPA mRNA isoforms. Results: Our results show that polarization of human macrophages from naïve to a pro-inflammatory state causes a marked increase of proximal polyA site selection in the 3'UTR and IPA events in genes relevant to macrophage functions. Additionally, we found a negative correlation between differential gene expression and IPA during pro-inflammatory polarization of primary human macrophages. As macrophages are abundant immune cells in the CRC microenvironment that either promote or abrogate cancer progression, we investigated how indirect exposure to CRC cells affects macrophage gene expression and 3'UTR-APA and IPA events. Co-culture with CRC cells alters the inflammatory phenotype of macrophages, increases the expression of pro-tumoral genes and induces 3'UTR-APA alterations. Notably, some of these gene expression differences were also found in tumor-associated macrophages of CRC patients, indicating that they are physiologically relevant. Upon macrophage pro-inflammatory polarization, SRSF12 is the pre-mRNA processing gene that is most upregulated. After SRSF12 knockdown in M1 macrophages there is a global downregulation of gene expression, in particular in genes involved in gene expression regulation and in immune responses. Discussion: Our results reveal new 3'UTR-APA and IPA mRNA isoforms produced during pro-inflammatory polarization of primary human macrophages and CRC co-culture that may be used in the future as diagnostic or therapeutic tools. Furthermore, our results highlight a function for SRSF12 in pro-inflammatory macrophages, key cells in the tumor response.


Subject(s)
Colorectal Neoplasms , Polyadenylation , Humans , Polyadenylation/genetics , 3' Untranslated Regions/genetics , RNA Isoforms , Macrophages , Colorectal Neoplasms/genetics , Tumor Microenvironment/genetics
14.
Nat Genet ; 55(10): 1721-1734, 2023 10.
Article in English | MEDLINE | ID: mdl-37735199

ABSTRACT

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.


Subject(s)
Neoplasms , R-Loop Structures , Humans , DNA, Single-Stranded/genetics , Genome-Wide Association Study , Mutagenesis , Neoplasms/genetics , Neoplasms/pathology , Cytidine Deaminase/genetics , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
15.
Biomolecules ; 12(5)2022 05 14.
Article in English | MEDLINE | ID: mdl-35625631

ABSTRACT

In order to identify factors involved in transcription of human snRNA genes and 3' end processing of the transcripts, we have carried out CRISPR affinity purification in situ of regulatory elements (CAPTURE), which is deadCas9-mediated pull-down, of the tandemly repeated U2 snRNA genes in human cells. CAPTURE enriched many factors expected to be associated with these human snRNA genes including RNA polymerase II (pol II), Cyclin-Dependent Kinase 7 (CDK7), Negative Elongation Factor (NELF), Suppressor of Ty 5 (SPT5), Mediator 23 (MED23) and several subunits of the Integrator Complex. Suppressor of Ty 6 (SPT6); Cyclin K, the partner of Cyclin-Dependent Kinase 12 (CDK12) and Cyclin-Dependent Kinase 13 (CDK13); and SWI/SNF chromatin remodelling complex-associated SWI/SNF-related, Matrix-associated, Regulator of Chromatin (SMRC) factors were also enriched. Several polyadenylation factors, including Cleavage and Polyadenylation Specificity Factor 1 (CPSF1), Cleavage Stimulation Factors 1 and 2 (CSTF1,and CSTF2) were enriched by U2 gene CAPTURE. We have already shown by chromatin immunoprecipitation (ChIP) that CSTF2-and Pcf11 and Ssu72, which are also polyadenylation factors-are associated with the human U1 and U2 genes. ChIP-seq and ChIP-qPCR confirm the association of SPT6, Cyclin K, and CDK12 with the U2 genes. In addition, knockdown of SPT6 causes loss of subunit 3 of the Integrator Complex (INTS3) from the U2 genes, indicating a functional role in snRNA gene expression. CAPTURE has therefore expanded the repertoire of transcription and RNA processing factors associated with these genes and helped to identify a functional role for SPT6.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , RNA, Small Nuclear , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Humans , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism
16.
Nat Commun ; 13(1): 2961, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618715

ABSTRACT

RNase H2 is a specialized enzyme that degrades RNA in RNA/DNA hybrids and deficiency of this enzyme causes a severe neuroinflammatory disease, Aicardi Goutières syndrome (AGS). However, the molecular mechanism underlying AGS is still unclear. Here, we show that RNase H2 is associated with a subset of genes, in a transcription-dependent manner where it interacts with RNA Polymerase II. RNase H2 depletion impairs transcription leading to accumulation of R-loops, structures that comprise RNA/DNA hybrids and a displaced DNA strand, mainly associated with short and intronless genes. Importantly, accumulated R-loops are processed by XPG and XPF endonucleases which leads to DNA damage and activation of the immune response, features associated with AGS. Consequently, we uncover a key role for RNase H2 in the transcription of human genes by maintaining R-loop homeostasis. Our results provide insight into the mechanistic contribution of R-loops to AGS pathogenesis.


Subject(s)
R-Loop Structures , Ribonucleases , Autoimmune Diseases of the Nervous System , DNA/chemistry , DNA Breaks , Endoribonucleases/metabolism , Humans , Inflammation/genetics , Nervous System Malformations , R-Loop Structures/genetics , RNA/chemistry , Ribonuclease H/metabolism , Ribonuclease, Pancreatic/metabolism , Ribonucleases/metabolism
17.
Cell Rep ; 41(3): 111503, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36261000

ABSTRACT

Concurrent mutation of a RAS oncogene and the tumor suppressor p53 is common in tumorigenesis, and inflammation can promote RAS-driven tumorigenesis without the need to mutate p53. Here, we show, using a well-established mutant RAS and an inflammation-driven mouse skin tumor model, that loss of the p53 inhibitor iASPP facilitates tumorigenesis. Specifically, iASPP regulates expression of a subset of p63 and AP1 targets, including genes involved in skin differentiation and inflammation, suggesting that loss of iASPP in keratinocytes supports a tumor-promoting inflammatory microenvironment. Mechanistically, JNK-mediated phosphorylation regulates iASPP function and inhibits iASPP binding with AP1 components, such as JUND, via PXXP/SH3 domain-mediated interaction. Our results uncover a JNK-iASPP-AP1 regulatory axis that is crucial for tissue homeostasis. We show that iASPP is a tumor suppressor and an AP1 coregulator.


Subject(s)
Repressor Proteins , Tumor Suppressor Protein p53 , Animals , Mice , Cell Transformation, Neoplastic/genetics , Inflammation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Repressor Proteins/metabolism , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , MAP Kinase Kinase 4/metabolism , Transcription Factor AP-1/metabolism
18.
Life (Basel) ; 11(12)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34947873

ABSTRACT

SETMAR is a protein lysine methyltransferase that is involved in several DNA processes, including DNA repair via the non-homologous end joining (NHEJ) pathway, regulation of gene expression, illegitimate DNA integration, and DNA decatenation. However, SETMAR is an atypical protein lysine methyltransferase since in anthropoid primates, the SET domain is fused to an inactive DNA transposase. The presence of the DNA transposase domain confers to SETMAR a DNA binding activity towards the remnants of its transposable element, which has resulted in the emergence of a gene regulatory function. Both the SET and the DNA transposase domains are involved in the different cellular roles of SETMAR, indicating the presence of novel and specific functions in anthropoid primates. In addition, SETMAR is dysregulated in different types of cancer, indicating a potential pathological role. While some light has been shed on SETMAR functions, more research and new tools are needed to better understand the cellular activities of SETMAR and to investigate the therapeutic potential of SETMAR.

19.
Cell Rep ; 35(2): 108965, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852864

ABSTRACT

Conversion of promoter-proximally paused RNA polymerase II (RNAPII) into elongating polymerase by the positive transcription elongation factor b (P-TEFb) is a central regulatory step of mRNA synthesis. The activity of P-TEFb is controlled mainly by the 7SK small nuclear ribonucleoprotein (snRNP), which sequesters active P-TEFb into inactive 7SK/P-TEFb snRNP. Here we demonstrate that under normal culture conditions, the lack of 7SK snRNP has only minor impacts on global RNAPII transcription without detectable consequences on cell proliferation. However, upon ultraviolet (UV)-light-induced DNA damage, cells lacking 7SK have a defective transcriptional response and reduced viability. Both UV-induced release of "lesion-scanning" polymerases and activation of key early-responsive genes are compromised in the absence of 7SK. Proper induction of 7SK-dependent UV-responsive genes requires P-TEFb activity directly mobilized from the nucleoplasmic 7SK/P-TEFb snRNP. Our data demonstrate that the primary function of the 7SK/P-TEFb snRNP is to orchestrate the proper transcriptional response to stress.


Subject(s)
Leukocytes/radiation effects , Positive Transcriptional Elongation Factor B/genetics , RNA Polymerase II/genetics , Ribonucleoproteins, Small Nuclear/genetics , Transcription, Genetic/radiation effects , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival , Chromatin/chemistry , Chromatin/metabolism , Chromatin/radiation effects , DNA Damage , Gene Deletion , Gene Expression Regulation , Humans , Leukocytes/cytology , Leukocytes/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Protein Binding , RNA Polymerase II/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins, Small Nuclear/deficiency , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Ultraviolet Rays
20.
Methods Enzymol ; 655: 349-399, 2021.
Article in English | MEDLINE | ID: mdl-34183129

ABSTRACT

Transcription termination in eukaryotic cells involves the recognition of polyadenylation signals (PAS) that signal the site of pre-mRNA cleavage and polyadenylation. Most eukaryotic genes contain multiple PAS that are used by alternative polyadenylation (APA), a co-transcriptional process that increases transcriptomic diversity and modulates the fate of the mRNA and protein produced. However, current tools to pinpoint the relationship between mRNAs in different subcellular fractions and the gene expression outcome are lacking, particularly in primary human immune cells, which, due to their nature, are challenging to study. Here, we describe an integrative approach using subcellular fractionation and RNA isolation, chromatin-bound and nucleoplasmic RNA-Sequencing, 3' RNA-Sequencing and bioinformatics, to identify accurate APA mRNA isoforms and to quantify gene expression in primary human macrophages. Our protocol includes macrophage differentiation and polarization, co-culture with cancer cells, and gene silencing by siRNA. This method allows the simultaneous identification of macrophage APA mRNA isoforms integrated with the characterization of nuclear APA events, the identification of the molecular mechanisms involved, as well as the gene expression alterations caused by the cancer-macrophage crosstalk. With this methodology we identified macrophage APA mRNA signatures driven by the cancer cells that alter the macrophage inflammatory and transcriptomic profiles, with consequences for macrophage physiology and tumor evasion.


Subject(s)
Polyadenylation , RNA Stability , 3' Untranslated Regions , Gene Expression , Humans , RNA, Messenger/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL