Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur Heart J Cardiovasc Imaging ; 24(6): 819-828, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36573930

ABSTRACT

AIMS: Left ventricular assist devices (LVADs) improve quality of life and survival in patients with advanced heart failure, but device-related infections (DRIs) remain cumbersome. We evaluated the diagnostic capability of [18F]FDG PET/CT, factors affecting its accuracy, and the additive value of semi-quantitative analysis for the diagnosis of DRI. METHODS AND RESULTS: LVAD recipients undergoing [18F]FDG PET/CT between 2012 and 2020 for suspected DRI were retrospectively included. [18F]FDG PET/CT was performed and evaluated in accordance with EANM guidelines. The final diagnosis of DRI, based on multidisciplinary consensus and findings during surgery, whenever performed, was used as the reference for diagnosis. 41 patients were evaluated for 59 episodes of suspected DRI. The clinical evaluation established driveline infection in 32 (55%) episodes, central device infection in 6 (11%), and combined infection in 2 (4%). Visual analysis of [18F]FDG PET/CT achieved a sensitivity and specificity for driveline infections of 0.79 and 0.71, respectively, whereas semi-quantitative analysis achieved a sensitivity and specificity of 0.94 and 0.83, respectively. For central device component infection, visual analysis of [18F]FDG PET/CT achieved a sensitivity and specificity of 0.75 and 0.60, respectively. Semi-quantitative analysis using SUVratio achieved a sensitivity and specificity of 1.0 and 0.8, respectively. The increase of specificity for central component infection was statistically significant (P = 0.05). CONCLUSIONS: [18F]FDG PET/CT reliably predicts the presence of DRI in LVAD recipients. Semi-quantitative analysis may increase the specificity of [18F]FDG PET/CT for the analysis of central device component infection and should be considered in equivocal cases after visual analysis.


Subject(s)
Heart-Assist Devices , Prosthesis-Related Infections , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Retrospective Studies , Heart-Assist Devices/adverse effects , Quality of Life , Prosthesis-Related Infections/diagnostic imaging , Prosthesis-Related Infections/surgery , Sensitivity and Specificity , Radiopharmaceuticals
2.
Br J Radiol ; 96(1152): 20230704, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786997

ABSTRACT

Cardiovascular diseases (CVD) are the leading cause of death worldwide and have an increasing impact on society. Precision medicine, in which optimal care is identified for an individual or a group of individuals rather than for the average population, might provide significant health benefits for this patient group and decrease CVD morbidity and mortality. Molecular imaging provides the opportunity to assess biological processes in individuals in addition to anatomical context provided by other imaging modalities and could prove to be essential in the implementation of precision medicine in CVD. New developments in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) systems, combined with rapid innovations in promising and specific radiopharmaceuticals, provide an impressive improvement of diagnostic accuracy and therapy evaluation. This may result in improved health outcomes in CVD patients, thereby reducing societal impact. Furthermore, recent technical advances have led to new possibilities for accurate image quantification, dynamic imaging, and quantification of radiotracer kinetics. This potentially allows for better evaluation of disease activity over time and treatment response monitoring. However, the clinical implementation of these new methods has been slow. This review describes the recent advances in molecular imaging and the clinical value of quantitative PET and SPECT in various fields in cardiovascular molecular imaging, such as atherosclerosis, myocardial perfusion and ischemia, infiltrative cardiomyopathies, systemic vascular diseases, and infectious cardiovascular diseases. Moreover, the challenges that need to be overcome to achieve clinical translation are addressed, and future directions are provided.


Subject(s)
Cardiovascular Diseases , Humans , Cardiovascular Diseases/diagnostic imaging , Precision Medicine , Heart , Tomography, Emission-Computed, Single-Photon/methods , Radiopharmaceuticals , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL