Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Molecules ; 23(7)2018 07 03.
Article in English | MEDLINE | ID: mdl-29970865

ABSTRACT

Atherosclerosis is a process of imbalanced lipid metabolism in the vascular walls. The underlying pathology mainly involves the deposition of oxidized lipids in the endothelium and the accumulation of cholesterol in macrophages. Macrophages export excessive cholesterol (cholesterol efflux) through ATP-binding cassette transporter A1 (ABCA1) to counter the progression of atherosclerosis. We synthesized novel chalcone derivatives and assessed their effects and the underlying mechanisms on ABCA1 expression in macrophages. Human THP-1 macrophages were treated with synthetic chalcone derivatives for 24 h. In Western blot and flow cytometry analyses, a chalcone derivative, (E)-1-(3,4-diisopropoxyphenyl)-3-(4-isopropoxy-3-methoxyphenyl)prop- 2-en-1-one (1m), was observed to significantly enhance ABCA1 protein expression in THP-1 cells (10 µM, 24 h). Levels of mRNA of ABCA1 and liver X receptor alpha (LXRα) were quantified using a real-time quantitative polymerase chain reaction technique and were found to be significantly increased after treatment with the novel chalcone derivative 1m. Several microRNAs, including miR155, miR758, miR10b, miR145, miR33, and miR106b, which functionally inhibit ABCA1 expression were suppressed after treatment with 1m. Collectively, 1m increases ABCA1 expression in human THP-1 macrophages. The mechanisms involve the activation of the LXRα-ABCA1 pathway and suppression of certain microRNAs that regulate ABCA1 expression.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Chalcones/chemical synthesis , Chalcones/pharmacology , Macrophages/cytology , Up-Regulation , Chalcones/chemistry , Gene Expression Regulation/drug effects , Humans , Liver X Receptors/genetics , Macrophages/drug effects , MicroRNAs/genetics , Molecular Structure , Signal Transduction/drug effects , THP-1 Cells
2.
Methods Mol Biol ; 2504: 31-40, 2022.
Article in English | MEDLINE | ID: mdl-35467277

ABSTRACT

Circulating extracellular vesicles (EVs) are gaining increased attention as carriers of proteins, nucleic acids, and lipids. Blood contains EVs from different cell sources that constitute an attractive target for biomarker studies. However, there is no consensus on the best approach to isolate EVs from blood. Non-EV proteins and lipoproteins in plasma/serum tend to contaminate isolated EVs and confound functional experiments. Here we describe a single-step, high-performance size-exclusion chromatography procedure for separation of EVs from most lipoproteins and non-EV proteins, and compare it to ultracentrifugation, still the most commonly used method for EV isolation.


Subject(s)
Extracellular Vesicles , Nucleic Acids , Chromatography, Gel , Extracellular Vesicles/metabolism , Lipoproteins/metabolism , Nucleic Acids/metabolism , Ultracentrifugation
3.
PLoS One ; 9(4): e93899, 2014.
Article in English | MEDLINE | ID: mdl-24705933

ABSTRACT

The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.


Subject(s)
Cellular Microenvironment/physiology , Enzyme Activation/physiology , Serine Endopeptidases/metabolism , Blotting, Western , Cadmium Chloride/toxicity , Cell Line , Cell-Free System , Cobalt/toxicity , Cytosol/metabolism , Humans , Hydrogen-Ion Concentration , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL