ABSTRACT
BACKGROUND: Hidradenitis suppurativa (HS), an inflammatory-based dermatological condition often associated with obesity, poses significant challenges in management. The very low-calorie ketogenic diet (VLCKD) has shown efficacy in addressing obesity, related metabolic disorders, and reducing chronic inflammation. However, its effects on HS remain underexplored. In this prospective pilot study, we aimed to investigate the impact of a 28-day active phase of VLCKD on HS in a sample of treatment-naive women with HS and excess weight. METHODS: Twelve women with HS and overweight or obesity (BMI 27.03 to 50.14Ā kg/m2), aged 21 to 54Ā years, meeting inclusion/exclusion criteria and agreeing to adhere to VLCKD, were included. Baseline lifestyle habits were assessed. The Sartorius score was used to evaluate the clinical severity of HS. Anthropometric parameters (waist circumference, weight, height, and body mass index), body composition via bioelectrical impedance analysis, levels of trimethylamine N-oxide (TMAO), oxidized low-density lipoprotein (oxLDL), and derivatives of reactive oxygen metabolites (dROMs) were assessed at baseline and after 28Ā days of the active phase of VLCKD. RESULTS: VLCKD led to general improvements in anthropometric parameters and body composition. Notably, a significant reduction in the Sartorius score was observed after the intervention (Δ%: -Ā 24.37 Ā± 16.64, p < 0.001). This reduction coincided with significant decreases in TMAO (p < 0.001), dROMs (p = 0.001), and oxLDL (p < 0.001) levels. Changes in the Sartorius score exhibited positive correlations with changes in TMAO (p < 0.001), dROMs (p < 0.001), and oxLDL (p = 0.002). CONCLUSION: The 28-day active phase of VLCKD demonstrated notable improvements in HS severity and associated metabolic markers, highlighting the potential utility of VLCKD in managing HS and its association with metabolic derangements in women with overweight or obesity.
Subject(s)
Diet, Ketogenic , Hidradenitis Suppurativa , Methylamines , Humans , Female , Overweight , Pilot Projects , Prospective Studies , Obesity/complications , Severity of Illness IndexABSTRACT
BACKGROUND: Acne, a chronic inflammatory disease impacting the pilosebaceous unit, is influenced significantly by inflammation and oxidative stress, and is commonly associated with obesity. Similarly, obesity is also associated with increased inflammation and oxidation. The role of diet in acne remains inconclusive, but the very low-calorie ketogenic diet (VLCKD), known for weight loss and generating anti-inflammatory ketone bodies, presents promising potential. Despite this, the effects of VLCKD on acne remain underexplored. This study aimed to investigate the efficacy of a 45-day active phase of VLCKD in reducing the clinical severity of acne in young women with treatment-naĆÆve moderate acne and grade I obesity. METHODS: Thirty-one women with treatment-naĆÆve moderate acne, grade I obesity (BMI 30.03-34.65Ā kg/m2), aged 18-30Ā years, meeting inclusion/exclusion criteria, and consenting to adhere to VLCKD were recruited. Baseline and post-intervention assessments included anthropometric measurements, body composition, phase angle (PhA), trimethylamine N-oxide (TMAO) levels, and reactive oxygen metabolite derivatives (dROMs) as markers of inflammation, dysbiosis, and oxidative stress, respectively. A comprehensive dermatological examination, incorporating the Global Acne Grading System (GAGS) and the Dermatology Life Quality Index (DLQI), was conducted for all women. RESULTS: VLCKD resulted in general improvements in anthropometric and body composition parameters. Significantly, there were significant reductions in both the GAGS score (Δ%: - 31.46 Ā± 9.53, p < 0.001) and the DLQI score (Δ%: - 45.44 Ā± 24.02, p < 0.001) after the intervention. These improvements coincided with significant decreases in TMAO (p < 0.001) and dROMs (p < 0.001) levels and a significant increase in PhA (Δ%: + 8.60 Ā± 7.40, p < 0.001). Changes in the GAGS score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjusting for Δ% FM. Changes in the DLQI score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjustment for Δ% FM. CONCLUSION: Given the side effects of drugs used for acne, there is an increasing need for safe, tolerable, and low-cost treatments that can be used for acne disease. The 45-day active phase of VLCKD demonstrated notable improvements in acne severity, and these improvements seemed to be attributable to the known antioxidant and anti-inflammatory effects of VLCKD.
Subject(s)
Acne Vulgaris , Diet, Ketogenic , Methylamines , Humans , Female , Diet, Ketogenic/adverse effects , Obesity/complications , Inflammation/complications , Anti-Inflammatory AgentsABSTRACT
In the field of nutritional science and metabolic disorders, there is a growing interest in natural bitter compounds capable of interacting with bitter taste receptors (TAS2Rs) useful for obesity management and satiety control. This study aimed to evaluate the effect of a nutraceutical formulation containing a combination of molecules appropriately designed to simultaneously target and stimulate these receptors. Specifically, the effect on CCK release exerted by a multi-component nutraceutical formulation (Cinchona bark, Chicory, and Gentian roots in a 1:1:1 ratio, named GengricinĀ®) was investigated in a CaCo-2 cell line, in comparison with Cinchona alone. In addition, these nutraceutical formulations were tested through a 3-month randomized controlled trial (RCT) conducted in subjects who were overweight-obese following a hypocaloric diet. Interestingly, the GengricinĀ® group exhibited a significant greater weight loss and improvement in body composition than the Placebo and Cinchona groups, indicating its effectiveness in promoting weight regulation. Additionally, the GengricinĀ® group reported higher satiety levels and a significant increase in serum CCK levels, suggesting a physiological basis for the observed effects on appetite control. Overall, these findings highlight the potential of natural nutraceutical strategies based on the combination of bitter compounds in modulating gut hormone release for effective appetite control and weight management.
Subject(s)
Appetite , Overweight , Adult , Humans , Obesity , Appetite Regulation/physiology , Dietary SupplementsABSTRACT
The identification of natural remedies for the management of the skin aging process is an increasingly growing issue. In this context, ursolic acid (UA), a ubiquitous molecule, mainly contained in Annurca apple (AA) fruit, has demonstrated valuable cosmetic potential. To this end, in the current study, the AA oleolite (AAO, extract in sunflower oil containing 784.40 Ā± 7.579 Āµg/mL of UA) was evaluated to inhibit porcine elastase enzymatic reactions through a validated spectrophotometric method. AAO has shown a valuable capacity to contrast the elastase enzyme with a calculated IC50 of 212.76 mg/mL, in comparison to UA (IC50 of 135.24 Āµg/mL) pure molecules and quercetin (IC50 of 72.47 Āµg/mL) which are used as positive controls. In this context and in view of the valuable antioxidant potential of AAO, its topical formulation with 2.5% (w/w) AAO was tested in a placebo-controlled, double-blind, two-arm clinical study on 40 volunteers. Our results indicated that after 28 days of treatment, a significant reduction of the nasolabial fold (-7.2 vs. baseline T0, p < 0.001) and forehead wrinkles (-5.3 vs. baseline T0, p < 0.001) were registered in combination with a valuable improvement of the viscoelastic skin parameters, where skin pliability/firmness (R0) and gross elasticity (R2) were significantly ameliorated (-13% vs. baseline T0, p < 0.001 for R0 and +12% vs. baseline T0, p < 0.001 for R2). Finally, considering the positive correlation between skin elasticity and hydration, the skin moisture was evaluated through the estimation of Trans epidermal water loss (TEWL) and skin conductance.
Subject(s)
Cosmetics , Malus , Skin Aging , Humans , Animals , Swine , Skin , Cosmetics/pharmacology , Antioxidants/pharmacology , Pharmaceutical Vehicles , Pancreatic ElastaseABSTRACT
Acute and chronic hypertension causes cerebral vasculopathy, increasing the risk of ischemia and stroke. Our study aimed to compare the effects of arterial pressure reduction on the pial microvascular responses induced by hypoperfusion and reperfusion in spontaneously hypertensive Wistar rats, desamethasone-induced hypertensive Wistar rats and age-matched normotensive Wistar rats fed for 3 months with a normal diet or normal diet supplemented with L-arginine or TaurisoloĀ® or L-arginine plus TaurisoloĀ®. At the end of treatments, the rats were submitted to bilateral occlusion of common carotid arteries for 30 min and reperfusion. The microvascular parameters investigated in vivo through a cranial window were: arteriolar diameter changes, permeability increase, leukocyte adhesion to venular walls and percentage of capillaries perfused. Hypoperfusion-reperfusion caused in all rats marked microvascular changes. L-arginine treatment was effective in reducing arterial blood pressure causing vasodilation but did not significantly reduce the damage induced by hypoperfusion-reperfusion. TaurisoloĀ® treatment was less effective in reducing blood pressure but prevented microvascular damage from hypoperfusion-reperfusion. L-arginine plus TaurisoloĀ® maintained blood pressure levels within the physiological range and protected the pial microcirculation from hypoperfusion-reperfusion-induced microvascular injuries. Therefore, the blood pressure reduction is not the only fundamental aspect to protect the cerebral circulation from hypoperfusion-reperfusion damage.
Subject(s)
Arginine , Hypertension , Rats, Wistar , Reperfusion Injury , Animals , Arginine/pharmacology , Reperfusion Injury/drug therapy , Rats , Hypertension/drug therapy , Hypertension/physiopathology , Male , Microcirculation/drug effects , Cerebrovascular Circulation/drug effects , Blood Pressure/drug effects , Brain/drug effects , Brain/blood supply , Brain/pathology , Brain/metabolism , Rats, Inbred SHRABSTRACT
Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.
Subject(s)
Peripheral Nerve Injuries , Animals , Mice , Peripheral Nerve Injuries/drug therapy , Ursolic Acid , Sciatic Nerve , Dietary Supplements , Muscle Fibers, SkeletalABSTRACT
Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1Ć) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.
Subject(s)
Benzenesulfonates , Colitis , Dinitrofluorobenzene/analogs & derivatives , Inflammatory Bowel Diseases , Humans , Mice , Animals , Dinitrobenzenes , Polyphenols/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/pathology , Antioxidants/adverse effects , Liver/metabolismABSTRACT
BACKGROUND: Apple peel is rich in natural molecules, many exhibiting a significant bioactivity. In this study, our objective was to establish a novel callus line derived from the apple peel of the Italian local variety Annurca, known to accumulate high levels of dihydrochalcones and terpenes. In this regard, we tested the impact of one elicitor, yeast extract, on the expression of genes encoding key enzymes involved in phloridzin and ursolic acid biosynthesis, leading to the accumulation of these antioxidant compounds. We also assessed the bioactivity of callus extracts enriched in these phytochemicals. RESULTS: After the elicitation, data showed increased expression of genes directly related to the synthesis of phloridzin and ursolic acid that were found to accumulate within the cultures. This presumably could explain the remarkable activity of extracts from the elicited-calli in inhibiting the growth of Staphylococcus aureus and Bacillus cereus. Also, the extracts enriched in antioxidant compounds inhibited reactive oxygen species (ROS) production in human cells exposed to ultraviolet-A (UV-A) radiation. CONCLUSION: Our results underscore the vast potential of the Annurca apple peel cell line in producing natural compounds that can be employed as food components to promote human health. Ā© 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
ABSTRACT
Urinary tract infections (UTIs) are the second most common type of bacterial infection worldwide. UTIs are gender-specific diseases, with a higher incidence in women. This type of infection could occur in the upper part of the urogenital tract, leading to pyelonephritis and kidney infections, or in the lower part of the urinary tract, leading to less serious pathologies, mainly cystitis and urethritis. The most common etiological agent is uropathogenic E. coli (UPEC), followed by Pseudomonas aeruginosa and Proteus mirabilis. Conventional therapeutic treatment involves the use of antimicrobial agents, but due to the dramatic increase in antimicrobial resistance (AMR), this strategy has partially lost its therapeutic efficacy. For this reason, the search for natural alternatives for UTI treatment represents a current research topic. Therefore, this review summarized the results of in vitro and animal- or human-based in vivo studies aimed to assess the potential therapeutic anti-UTI effects of natural polyphenol-based nutraceuticals and foods. In particular, the main in vitro studies were reported, describing the principal molecular therapeutic targets and the mechanism of action of the different polyphenols studied. Furthermore, the results of the most relevant clinical trials for the treatment of urinary tract health were described. Future research is needed to confirm and validate the potential of polyphenols in the clinical prophylaxis of UTIs.
Subject(s)
Bacterial Infections , Escherichia coli Infections , Urinary Tract Infections , Urinary Tract , Uropathogenic Escherichia coli , Animals , Female , Humans , Escherichia coli , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Urinary Tract/microbiologyABSTRACT
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Subject(s)
Appetite Depressants , Chalcones , Diabetes Mellitus, Type 2 , Animals , Chalcones/pharmacology , Chalcones/therapeutic use , Chalcones/chemistry , Diabetes Mellitus, Type 2/drug therapy , Obesity/drug therapy , Obesity/metabolismABSTRACT
Urolithiasis is a complex and multifactorial disease characterized by the formation of calculi at the urinary tract level. Conventional therapeutic prophylaxis relies on the use of Ca-blockers, alkalis, diuretics, and anti-edema agents, but their prolonged utilization is often limited by several side effects. In this scenario, the aim of the present work was the design of an innovative multi-component nutraceutical formulation (NF) for the management of urinary stones consisting of a synergistic combination of natural aqueous extracts of Oreganum vulgare L. (1% of saponin), Urtica dioica (0.8% of Ć-sitosterol), Phyllanthus niruri (15% of tannins w/w), and Ceterach officinarum in association with bromelain, K, and Mg citrate. To assess the potential of NF also in the treatment of uric acid (UA) stones, the effects on the expression of the cellular UA transporters OAT1 and URAT1 were investigated in a renal tubular cell line. In addition, the myorelaxant effect of NF was investigated in a human pulmonary artery smooth muscle cell (HPASMC) model resulting in a decreased muscle contractility of -49.4% (p < 0.01) compared to the control. The treatment with NF also showed a valuable inhibition of in vitro calcium-oxalate crystal formation, both in prevention (-52.3% vs. control, p < 0.01) and treatment (-70.8% vs. control, p < 0.01) experiments. Finally, an ischemic reperfusion rat model was used to evaluate the NF anti-edema effects, resulting in a reduction in the edema-related vascular permeability (Normalized Gray Levels, NGL = 0.40 Ā± 0.09, p < 0.01, -67.1% vs. untreated rats). In conclusion, the present NF has shown to be a promising natural alternative for managing urinary tract stones.
Subject(s)
Kidney Calculi , Urinary Calculi , Urolithiasis , Humans , Rats , Animals , Kidney Calculi/metabolism , Calcium Oxalate/metabolism , Dietary SupplementsABSTRACT
Olive tree leaves are an abundant source of bioactive compounds with several beneficial effects for human health, including a protective role against many types of cancer. In this study, we investigated the effect of an extract, obtained from olive tree (Olea europaea L.) leaves (OLE), on proliferation, invasion, and epithelial to mesenchymal transition (EMT) on metastatic melanoma, the highly aggressive form of skin cancer and the deadliest diseases. Our results demonstrated that OLE inhibited melanoma cells proliferation through cell cycle arrest and induction of apoptotic cell death. Moreover, OLE suppressed the migration, invasion, and colonies formation of human melanoma cells. Similar to our in vitro findings, we demonstrated that the oral administration of OLE inhibited cutaneous tumor growth and lung metastasis formation in vivo by modulating the expression of EMT related factors. In addition, the anti-proliferative and anti-invasive effects of OLE against melanoma were also related to a simultaneous targeting of mitogen-activated protein kinase and PI3K pathways, both in vitro and in vivo. In conclusion, our findings suggest that OLE has the potential to inhibit the metastatic spread of melanoma cells thanks to its multifaceted mechanistic effects, and may represent a new add-on therapy for the management of metastatic melanoma.
Subject(s)
Melanoma , Olea , Epithelial-Mesenchymal Transition , Humans , Melanoma/drug therapy , Mitogen-Activated Protein Kinases , Phosphatidylinositol 3-Kinases , Plant Extracts/pharmacology , Plant LeavesABSTRACT
Proanthocyanidins (PACs) are a group of bioactive molecules found in a variety of plants and foods. Their bioavailability depends on their molecular size, with monomers and dimers being more bioavailable than those that have a higher polymerization degree. This study aimed to develop a method to convert high-molecular-weight PACs to low-molecular-weight ones in a grape seed extract (GSE) from Vitis vinifera L. Therefore, GSE was subjected to alkaline treatment (ATGSE), and its difference in chemical composition, compared to GSE, was evaluated using a molecular networking (MN) approach based on results obtained from HPLC-ESI HRMS/MS characterization analysis. The network analysis mainly noted the PAC cluster with about 142 PAC compounds identified. In particular, the obtained results showed a higher content of monomeric and dimeric PACs in ATGSE compared to GSE, with 58% and 49% monomers and 31% and 24% dimers, respectively. Conversely, trimeric (9%), polymeric (4%), and galloylated PACs (14%) were more abundant in GSE than in ATGSE (6%, 1%, and 4%, respectively). Moreover, in vitro antioxidant and anti-inflammatory activities were investigated, showing the high beneficial potential of both extracts. In conclusion, ATGSE could represent an innovative natural matrix rich in bioavailable and bioaccessible PACs for nutraceutical applications with potential beneficial properties.
Subject(s)
Grape Seed Extract , Proanthocyanidins , Vitis , Proanthocyanidins/chemistry , Biological Availability , Molecular Weight , Grape Seed Extract/pharmacology , Grape Seed Extract/chemistry , Vitis/chemistry , Seeds/chemistry , Plant Extracts/chemistryABSTRACT
Hops (Humulus lupulus L.) is by far the greatest contributors to the bitter property of beer. Over the past years, a large body of evidence demonstrated the presence of taste receptors in different locations of the oral cavity. In addition to the taste buds of the tongue, cells expressing these receptors have been identified in olfactory bulbs, respiratory and gastrointestinal tract. In the gut, the attention was mainly directed to sweet Taste Receptor (T1R) and bitter Taste Receptor (T2R) receptors. In particular, T2R has shown to modulate secretion of different gut hormones, mainly Glucagon-like Peptide 1 (GLP-1), which are involved in the regulation of glucose homeostasis and the control of gut motility, thereby increasing the sense of satiety. Scientific interest in the activity of bitter taste receptors emerges because of their wide distribution in the human species and the large range of natural substances that interact with them. Beer, whose alcohol content is lower than in other common alcoholic beverages, contains a considerable amount of bitter compounds and current scientific evidence shows a direct effect of beer compounds on glucose homeostasis. The purpose of this paper is to review the available literature data in order to substantiate the novel hypothesis of a possible direct effect of hop-derived bitter compounds on secretion of GLP-1, through the activation of T2R, with consequent improvement of glucose homeostasis.
Subject(s)
Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Homeostasis/drug effects , Humulus/chemistry , Plant Extracts/pharmacology , Animals , Beer/analysis , Enteroendocrine Cells/chemistry , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/physiology , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/physiology , Glucagon-Like Peptide 1/drug effects , Humans , Plant Extracts/chemistry , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/physiology , Taste , Taste Buds/drug effectsABSTRACT
Diabetes is a metabolic disease highly widespread worldwide, and the most common form is the type 2 diabetes mellitus (T2DM). A large number of synthetic drugs are currently available for the treatment of diabetes; however, they present various side effects and, for this reason, people are increasingly inclined to search natural alternative treatments. Among these, Arctium lappa (A. lappa) has interesting anti-diabetic activities, exerted by improving glucose homeostasis and reducing insulin-resistance. In addition, A. lappa exerts a marked antioxidant activity, an effect known to play a pivotal role in the treatment of T2DM. The purpose of this review is to analyse scientific evidence in order to evaluate the role of A. lappa and its bioactive compounds in management of T2DM. The literature search performed provided only in vitro and animal-based studies. No clinical studies have been conducted in order to investigate the effect of A. lappa on T2DM patients. However, available literature provides evidence for further clinical trials in order to confirm these claimed activities on humans.
Subject(s)
Arctium/chemistry , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Oxidative Stress/drug effects , Diabetes Mellitus, Type 2/pathology , Homeostasis , HumansABSTRACT
A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Flavonoids/pharmacology , Inflammation/metabolism , Metabolic Diseases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Biomarkers , Clinical Trials as Topic , Disease Susceptibility , Drug Evaluation, Preclinical , Flavonoids/chemistry , Flavonoids/therapeutic use , Humans , Inflammation/complications , Inflammation/diagnosis , Inflammation Mediators/metabolism , Metabolic Diseases/diagnosis , Metabolic Diseases/drug therapy , Metabolic Diseases/etiology , Oxidative Stress/drug effects , Signal Transduction/drug effects , Treatment OutcomeABSTRACT
Mounting evidences are supporting a key role of distinct gut bacteria in the occurrence and progression of intestinal and extra-intestinal tumors. More importantly, it has been recently demonstrated that some gut bacteria strains synergize with largely-used anticancer drugs as alkylating or immune checkpoint blockade agents thus optimizing the immune response against multiple solid cancers. However, the exact role played by each gut bacterium in cancer occurrence and response to therapy is still in its infancy; and the current knowledge, although exciting, still needs to be transferred from mice models to human beings. Here, the advances in the understanding of how gut microbes and immune response shape each other in a cancer context are reviewed together with the implications of these finding for future antitumor therapy. Herein, the most important bacteria strains, able to boost the immune response triggered by anticancer drugs, together with their mechanism of action, whenever known, have been surveyed. It is reasonable to think that cocktails of beneficial bacteria together with an ad hoc diet or food supplements may be used as novel anticancer adjuvant agents in future therapeutic regimens.
Subject(s)
Antineoplastic Agents/therapeutic use , Gastrointestinal Microbiome/immunology , Neoplasms/diet therapy , Probiotics/therapeutic use , Antineoplastic Agents/immunology , Diet , Gastrointestinal Microbiome/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathologyABSTRACT
Chronic low-grade systemic inflammation represents a mechanism common to many diseases linked to atherosclerosis-related pathways. There is a growing body of evidence indicating that the combination of food quantity and quality along with genetic susceptibility are able to induce the aberrant activation of innate immune signalling, which initially contributes to chronic low-grade inflammation. Liver represents the central player to inflammatory response. Dietary/metabolic factors contribute to the pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD), the main causes of liver disease in the Western world. Enlargement of the spleen, central organ in regulating the inflammation-related immune response, is commonly seen in patients with of NAFLD, depicting the so called "liver-spleen axis." The aim of this review was to provide an at-a-glance overview of the possible bi-directional mechanisms linking nutrition and inflammation, particularly pinpointing the inflammatory effects stemmed by nutrition on "liver-spleen axis." In particular, the role of unhealthy diet, healthy dietary patterns, such as the Mediterranean diet style, dietary vitamins and micronutrients, such as vitamin D or Magnesium, and Glucagon-Like Peptide-1, a well-known incretin released in response to meal intake, will be discussed. The highly variability of the inflammatory response highlights the role of expert nutritionists in refining methodologies apt to assess nutritional epidemiology and to apply appropriate dietary intervention to counteract diet-induced inflammation mechanisms.
Subject(s)
Inflammation/physiopathology , Liver/physiopathology , Nutritional Status/physiology , Spleen/physiopathology , Diet , Diet, Healthy , Diet, Mediterranean , Food Quality , Gastrointestinal Microbiome/physiology , Genetic Predisposition to Disease , Humans , Inflammation/etiology , Inflammation/genetics , Micronutrients/administration & dosage , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Nutritional Status/immunology , Splenomegaly/etiology , Splenomegaly/physiopathology , Vitamin DABSTRACT
Currently, nutraceuticals do not have a specific definition distinct from those of other food-derived categories, such as food supplements, herbal products, pre- and probiotics, functional foods, and fortified foods. Many studies have led to an understanding of the potential mechanisms of action of pharmaceutically active components contained in food that may improve health and reduce the risk of pathological conditions while enhancing overall well-being. Nevertheless, there is a lack of clear information and, often, the claimed health benefits may not be properly substantiated by safety and efficacy information or in vitro and in vivo data, which can induce false expectations and miss the target for a product to be effective, as claimed. An officially shared and accepted definition of nutraceuticals is still missing, as nutraceuticals are mostly referred to as pharma-foods, a powerful toolbox to be used beyond the diet but before the drugs to prevent and treat pathological conditions, such as in subjects who may not yet be eligible for conventional pharmaceutical therapy. Hence, it is of utmost importance to have a proper and unequivocal definition of nutraceuticals and shared regulations. It also seems wise to assess the safety, mechanism of action and efficacy of nutraceuticals with clinical data. A growing demand exists for nutraceuticals, which seem to reside in the grey area between pharmaceuticals and food. Nonetheless, given specific legislation from different countries, nutraceuticals are experiencing challenges with safety and health claim substantiation.
Subject(s)
Diet , Dietary Supplements/standards , Legislation, Food , Functional Food , HumansABSTRACT
Essential oils are complex mixtures of hydrocarbons and their oxygenated derivatives arising from two different isoprenoid pathways. Essential oils are produced by glandular trichomes and other secretory structures, specialized secretory tissues mainly diffused onto the surface of plant organs, particularly flowers and leaves, thus exerting a pivotal ecological role in plant. In addition, essential oils have been used, since ancient times, in many different traditional healing systems all over the world, because of their biological activities. Many preclinical studies have documented antimicrobial, antioxidant, anti-inflammatory and anticancer activities of essential oils in a number of cell and animal models, also elucidating their mechanism of action and pharmacological targets, though the paucity of in human studies limits the potential of essential oils as effective and safe phytotherapeutic agents. More well-designed clinical trials are needed in order to ascertain the real efficacy and safety of these plant products.