Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 624: 294-308, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29253777

ABSTRACT

Climate change (CC) directly influences agricultural sectors, presenting the need to identify both adaptation and mitigation actions that can make local farming communities and crop production more resilient. In this context, the viticultural sector is one of those most challenged by CC due to the need to combine grape quality, grapevine cultivar adaptation and therefore farmers' future incomes. Thus, understanding how suitability for viticulture is changing under CC is of primary interest in the development of adaptation strategies in traditional wine-growing regions. Considering that climate is an essential part of the terroir system, the expected variability in climate change could have a marked influence on terroir resilience with important effects on local farming communities in viticultural regions. From this perspective, the aim of this paper is to define a new dynamic viticultural zoning procedure that is able to integrate the effects of CC on grape quality responses and evaluate terroir resilience, providing a support tool for stakeholders involved in viticultural planning (winegrowers, winegrower consortiums, policy makers etc.). To achieve these aims, a Hybrid Land Evaluation System, combining qualitative (standard Land Evaluation) and quantitative (simulation model) approaches, was applied within a traditional region devoted to high quality wine production in Southern Italy (Valle Telesina, BN), for a specific grapevine cultivar (Aglianico). The work employed high resolution climate projections that were derived under two different IPCC scenarios, namely RCP 4.5 and RCP 8.5. The results obtained indicate that: (i) only 2% of the suitable area of Valle Telesina expresses the concept of terroir resilience orientated towards Aglianico ultra quality grape production; (ii) within 2010-2040, it is expected that 41% of the area suitable for Aglianico cultivation will need irrigation to achieve quality grape production; (iii) by 2100, climate change benefits for the cultivation of Aglianico will decrease, as well as the suitable areas.

2.
Environ Pollut ; 144(1): 308-16, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16777304

ABSTRACT

Volcanic soils affected by different numbers of polluted river flooding events were investigated. Chromium and Cu were the major soil contaminants. Nickel, Fe, Zn and Mn total content never exceeded the Italian mandatory limits. The distribution of Cr and Cu total contents among studied soils indicated that only Cr contamination was related to overflowing events. In polluted soils, sequential chemical extractions revealed a preferential association of Cr and Cu with organic forms. A progressive Cr insolubilization with ageing was observed. Significant amounts of Cr and Cu were extracted by NH(4)-oxalate, suggesting metals association with short-range-order aluminosilicates and organo-mineral complexes. Possible methodological drawbacks in the use of the EU-BCR chemical speciation protocol on volcanic soils are discussed. Micromorphology and SEM/WDS analyses revealed Cr and Cu enriched silt and clay coatings in surface and subsurface soil horizons, suggesting a transfer of metal-rich sediments along the soil pore network with water movement.


Subject(s)
Disasters , Environmental Pollution/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Chromium/analysis , Copper/analysis , Environmental Monitoring/methods , Geography , Italy , Rivers , Soil/analysis , Volcanic Eruptions , Water Movements
3.
Environ Pollut ; 144(1): 317-26, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16406624

ABSTRACT

The effect of heavy metal contamination on biological and biochemical properties of Italian volcanic soils was evaluated in a multidisciplinary study, involving pedoenvironmental, micromorphological, physical, chemical, biological and biochemical analyses. Soils affected by recurring river overflowing, with Cr(III)-contaminated water and sediments, and a non-flooded control soil were analysed for microbial biomass, total and active fungal mycelium, enzyme activities (i.e., FDA hydrolase, dehydrogenase, beta-glucosidase, urease, arylsulphatase, acid phosphatase) and bacterial diversity (DGGE characterisation). Biological and biochemical data were related with both total and selected fractions of Cr and Cu (the latter deriving from agricultural chemical products) as well as with total and extractable organic C. The growth and activity of soil microbial community were influenced by soil organic C content rather than Cu or Cr contents. In fact, positive correlations between all studied parameters and organic C content were found. On the contrary, negative correlations were observed only between total fungal mycelium, dehydrogenase, arylsulphatase and acid phosphatase activities and only one Cr fraction (the soluble, exchangeable and carbonate bound). However, total Cr content negatively affected the eubacterial diversity but it did not determine changes in soil activity, probably because of the redundancy of functions within species of soil microbial community. On the other hand, expressing biological and biochemical parameters per unit of total organic C, Cu pollution negatively influenced microbial biomass, fungal mycelium and several enzyme activities, confirming soil organic matter is able to mask the negative effects of Cu on microbial community.


Subject(s)
Environmental Pollution , Implosive Therapy , Soil Microbiology , Soil Pollutants/analysis , Trace Elements/analysis , Bacteria/growth & development , Chromium/analysis , Copper/analysis , Ecosystem , Fungi/physiology , Italy , Rivers , Soil/analysis , Volcanic Eruptions
4.
Sci Total Environ ; 295(1-3): 17-34, 2002 Aug 05.
Article in English | MEDLINE | ID: mdl-12186286

ABSTRACT

The total contents and the chemical and mineralogical forms of the metals Fe, Al, Cu, Co, Cr, Pb, Zn, Ni and Mn in the horizons of a soil profile, representative of an area devoted to stocking raw materials in the dismantled iron-steel industrial plant of ILVA of Bagnoli (Naples), were studied by physical and chemical methods. The geological setting of the study area is the result of volcanic activity in the Phlegrean Fields, a group of polygenic volcanoes to the west of Naples, which give rise to the parent soil material. Soil morphology appeared to be strongly disturbed by the occurrence and stratification of materials used in the industrial process. Fine sediments illuviation down the profile resulted in the occurrence of silt and clay coatings. The total contents of Cu, Co, Cr, Pb, Zn and Ni, in the whole soil samples, especially in the surface layers, were above the regulatory levels (Cu 120, Co 20, Cr 150, Pb 100, Zn 150, Ni 120 mg kg(-1)) stated by the Italian Ministry of Environment for soils in public, private and residential areas, and below the levels (Cu 600, Co 250, Cr 800, Pb 1000, Zn 1500, Ni 500 mg kg(-1)) outlined for soils and subsoils of industrial and commercial areas (Gazzetta Ufficiale della Repubblica Italiana, 1999). Speciation of heavy metals and the determination of the different chemical pools in the fraction < 2 mm identified the large presence of elements trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. A constant amount of Cu was associated with organic compounds. A significant amount of Zn (> 20%) was extracted in diluted acetic acid solution, indicating that the element was present in a more readily and potentially available form. In the clay fraction (< 2 microm) heavy metals were associated with both amorphous and crystalline iron forms. The presence of iron-rich clay coatings was evident in the illuvial pores of deeper horizons. Enrichment in Cu, Co, Cr and Zn of the coatings was observed. Possible translocation of metals down through the soil profile mainly bound to fine particles of relatively inert forms of iron is hypothesised. The dispersion in water of the clay fraction resulted in an average percentage dispersion of approximately 20% with a peak of 41.7% at 68-72 cm depth. Magnetite, goethite, hematite, calcite and quartz mixed with K-feldspars, clynopyroxenes and mica occurred in the coarse sand fractions (2-0.2 mm) of the soil samples from all the surface horizons. Talcum and goethite together with clay minerals at 1.4 nm, kaolinite and illite were found in the clays (< 2 microm).


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Environmental Monitoring , Industry , Iron , Italy , Manufactured Materials , Steel
SELECTION OF CITATIONS
SEARCH DETAIL