Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nucleic Acids Res ; 42(3): e17, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24357407

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA-mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA-mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA-mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease.


Subject(s)
MicroRNAs/metabolism , Models, Genetic , RNA, Messenger/metabolism , Cluster Analysis , Computer Graphics , Gene Expression Profiling , Gene Expression Regulation , Humans , Immune System/metabolism , MicroRNAs/classification , Neuroblastoma/genetics , Neuroblastoma/metabolism , Software
2.
Breast Cancer Res ; 16(4): R79, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25011585

ABSTRACT

INTRODUCTION: Peroxiredoxin-1 (PRDX1) is a multifunctional protein, acting as a hydrogen peroxide (H2O2) scavenger, molecular chaperone and immune modulator. Although differential PRDX1 expression has been described in many tumors, the potential role of PRDX1 in breast cancer remains highly ambiguous. Using a comprehensive antibody-based proteomics approach, we interrogated PRDX1 protein as a putative biomarker in estrogen receptor (ER)-positive breast cancer. METHODS: An anti-PRDX1 antibody was validated in breast cancer cell lines using immunoblotting, immunohistochemistry and reverse phase protein array (RPPA) technology. PRDX1 protein expression was evaluated in two independent breast cancer cohorts, represented on a screening RPPA (n = 712) and a validation tissue microarray (n = 498). In vitro assays were performed exploring the functional contribution of PRDX1, with oxidative stress conditions mimicked via treatment with H2O2, peroxynitrite, or adenanthin, a PRDX1/2 inhibitor. RESULTS: In ER-positive cases, high PRDX1 protein expression is a biomarker of improved prognosis across both cohorts. In the validation cohort, high PRDX1 expression was an independent predictor of improved relapse-free survival (hazard ratio (HR) = 0.62, 95% confidence interval (CI) = 0.40 to 0.96, P = 0.032), breast cancer-specific survival (HR = 0.44, 95% CI = 0.24 to 0.79, P = 0.006) and overall survival (HR = 0.61, 95% CI = 0.44 to 0.85, P = 0.004). RPPA screening of cancer signaling proteins showed that ERα protein was upregulated in PRDX1 high tumors. Exogenous H2O2 treatment decreased ERα protein levels in ER-positive cells. PRDX1 knockdown further sensitized cells to H2O2- and peroxynitrite-mediated effects, whilst PRDX1 overexpression protected against this response. Inhibition of PRDX1/2 antioxidant activity with adenanthin dramatically reduced ERα levels in breast cancer cells. CONCLUSIONS: PRDX1 is shown to be an independent predictor of improved outcomes in ER-positive breast cancer. Through its antioxidant function, PRDX1 may prevent oxidative stress-mediated ERα loss, thereby potentially contributing to maintenance of an ER-positive phenotype in mammary tumors. These results for the first time imply a close connection between biological activity of PRDX1 and regulation of estrogen-mediated signaling in breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Estrogen Receptor alpha/metabolism , Oxidative Stress , Peroxiredoxins/metabolism , Cell Line, Tumor , Cohort Studies , Female , Humans , Immunohistochemistry , Prognosis , Signal Transduction
3.
Int J Cancer ; 131(7): E1078-87, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22514120

ABSTRACT

Gliomas are aggressive tumors of the central nervous system originating from proliferating neural cells. Regulators of neural stem or progenitor cells biology may thus influence aspects of brain tumorigenesis, such as the maintenance of tumor-propagating potential. We investigated the role of Pax6, a neurogenic transcription factor already suggested as a positive prognostic marker for human gliomas, in a well-characterized in vivo model of PDGF-B-driven oligodendroglioma. In this system, the expression of Pax6 severely impairs tumor propagation by inducing a reduction of cell proliferation and the acquisition of differentiation traits in tumor-initiating cells. The overexpression of Pax6 correlates with a downregulation of Olig2, a bHLH transcription factor that normally antagonizes Pax6 in adult neurogenic niches and that plays a key role in the maintenance of neural stem and progenitor cells. Furthermore, we found that Olig2 is strictly required to maintain the malignancy of oligodendroglioma cells, since its silencing by interfering RNA abrogates tumor propagation. We finally show evidence that this function depends, at least in part, on the silencing of ID4, a dominant negative bHLH protein, whose upregulation follows Olig2 loss. In our model, the upregulation of ID4 mimics the loss of Olig2 in impairing the tumor-propagating potential of glioma cells. Our data, therefore, establish the relevance of physiological regulators of neural stem cell biology in regulating glial tumor malignancy and provide support for their functional interactions in this context.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Transformation, Neoplastic/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Oligodendroglioma/genetics , Paired Box Transcription Factors/genetics , Platelet-Derived Growth Factor/genetics , Repressor Proteins/genetics , Animals , Cell Proliferation , Gene Expression , Gene Expression Regulation, Neoplastic , Inhibitor of Differentiation Proteins/genetics , Mice , Mice, Inbred C57BL , Oligodendrocyte Transcription Factor 2 , Oligodendroglioma/metabolism , PAX6 Transcription Factor
4.
Transl Psychiatry ; 12(1): 305, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915065

ABSTRACT

The D-aspartate oxidase (DDO) gene encodes the enzyme responsible for the catabolism of D-aspartate, an atypical amino acid enriched in the mammalian brain and acting as an endogenous NMDA receptor agonist. Considering the key role of NMDA receptors in neurodevelopmental disorders, recent findings suggest a link between D-aspartate dysmetabolism and schizophrenia. To clarify the role of D-aspartate on brain development and functioning, we used a mouse model with constitutive Ddo overexpression and D-aspartate depletion. In these mice, we found reduced number of BrdU-positive dorsal pallium neurons during corticogenesis, and decreased cortical and striatal gray matter volume at adulthood. Brain abnormalities were associated with social recognition memory deficit at juvenile phase, suggesting that early D-aspartate occurrence influences neurodevelopmental related phenotypes. We corroborated this hypothesis by reporting the first clinical case of a young patient with severe intellectual disability, thought disorders and autism spectrum disorder symptomatology, harboring a duplication of a chromosome 6 region, including the entire DDO gene.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Adult , Animals , Aspartic Acid/metabolism , Autism Spectrum Disorder/genetics , D-Aspartate Oxidase/chemistry , D-Aspartate Oxidase/genetics , D-Aspartate Oxidase/metabolism , D-Aspartic Acid/genetics , D-Aspartic Acid/metabolism , Gene Duplication , Humans , Intellectual Disability/genetics , Memory Disorders/genetics , Mice , Oxidoreductases , Receptors, N-Methyl-D-Aspartate/metabolism
5.
BMC Cancer ; 10: 550, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20939912

ABSTRACT

BACKGROUND: In the last years, the transmembrane proteoglycan NG2 has gained interest as a therapeutic target for the treatment of diverse tumor types, including gliomas, because increases of its expression correlate with dismal prognosis. NG2 has been shown to function as a co-receptor for PDGF ligands whose aberrant expression is common in gliomas. We have recently generated a glioma model based on the overexpression of PDGF-B in neural progenitors and here we investigated the possible relevance of NG2 during PDGF-driven gliomagenesis. METHODS: The survival curves of NG2-KO mice overexpressing PDGF-B were compared to controls by using a Log-rank test. The characteristics of tumors induced in NG2-KO were compared to those of tumors induced in wild type mice by immunostaining for different cell lineage markers and by transplantation assays in adult mice. RESULTS: We showed that the lack of NG2 does not appreciably affect any of the characterized steps of PDGF-driven brain tumorigenesis, such as oligodendrocyte progenitor cells (OPC) induction, the recruitment of bystander OPCs and the progression to full malignancy, which take place as in wild type animals. CONCLUSIONS: Our analysis, using both NG2-KO mice and a miRNA based silencing approach, clearly demonstrates that NG2 is not required for PDGF-B to efficiently induce and maintain gliomas from neural progenitors. On the basis of the data obtained, we therefore suggest that the role of NG2 as a target molecule for glioma treatment should be carefully reconsidered.


Subject(s)
Antigens/physiology , Brain Neoplasms/pathology , Glioma/pathology , Proteoglycans/physiology , Receptor, Platelet-Derived Growth Factor beta/metabolism , Animals , Antigens/genetics , Brain Neoplasms/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Gene Silencing , Glioma/genetics , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Oligodendroglia/cytology , Proteoglycans/genetics , Retroviridae , Stem Cells
6.
Int J Cancer ; 124(10): 2251-9, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19165863

ABSTRACT

We describe the generation of mouse gliomas following the overexpression of PDGF-B in embryonic neural progenitors. Our histopathological, immunohistochemical and genome-wide expression analyses revealed a surprising uniformity among PDGF-B induced tumors, despite they were generated by transducing a highly heterogeneous population of progenitor cells known for their ability to produce all the cell types of the central nervous system. Comparison of our microarray data with published gene expression data sets for many different murine neural cell types revealed a closest correlation between our tumor cells and oligodendrocyte progenitor cells, confirming definitively that PDGF-B-induced gliomas are pure oligodendrogliomas. Importantly, we show that this uniformity is likely due to the ability of PDGF-B overexpression to respecify competent embryonic neural precursors toward the oligodendroglial lineage, providing evidence that the transforming activity of PDGF-B is influenced by the developmental potential of the targeted cells. Interestingly, we found that PDGF-B-induced tumors harbor different proliferating cell populations. However only PDGF-B-overexpressing cells are tumorigenic, indicating that paracrine signaling from the tumor is unable to transform bystander cells.


Subject(s)
Brain Neoplasms/pathology , Embryonic Stem Cells/pathology , Oligodendroglioma/pathology , Proto-Oncogene Proteins c-sis/physiology , Animals , Brain Neoplasms/metabolism , Embryonic Stem Cells/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Oligodendroglioma/metabolism , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-sis/metabolism
7.
Nat Commun ; 7: 10855, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26927507

ABSTRACT

Bioresponsive NIR-fluorophores offer the possibility for continual visualization of dynamic cellular processes with added potential for direct translation to in vivo imaging. Here we show the design, synthesis and lysosome-responsive emission properties of a new NIR fluorophore. The NIR fluorescent probe design differs from typical amine functionalized lysosomotropic stains with off/on fluorescence switching controlled by a reversible phenol/phenolate interconversion. Emission from the probe is shown to be highly selective for the lysosomes in co-imaging experiments using a HeLa cell line expressing the lysosomal-associated membrane protein 1 fused to green fluorescent protein. The responsive probe is capable of real-time continuous imaging of fundamental cellular processes such as endocytosis, lysosomal trafficking and efflux in 3D and 4D. The advantage of the NIR emission allows for direct translation to in vivo tumour imaging, which is successfully demonstrated using an MDA-MB-231 subcutaneous tumour model. This bioresponsive NIR fluorophore offers significant potential for use in live cellular and in vivo imaging, for which currently there is a deficit of suitable molecular fluorescent tools.


Subject(s)
Fluorescent Dyes/chemistry , Lysosomes/metabolism , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Adenocarcinoma/metabolism , Animals , Breast Neoplasms , Cell Communication , Cell Line, Tumor , Female , Fluorescent Dyes/chemical synthesis , Humans , Mice , Microscopy, Fluorescence , Molecular Structure , Neoplasms, Experimental/metabolism
8.
Mol Diagn Ther ; 17(2): 63-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23329364

ABSTRACT

Neuroblastoma is a genetically and clinically heterogeneous tumor of childhood, arising from precursor cells of the sympathetic nervous system. It is still a challenging cancer for pediatric oncology, as some tumors will spontaneously regress, while others will become refractory to all forms of therapy. The clinical course of this disease is greatly influenced by both patient age and the genetic abnormalities that occur within the tumors. MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification and loss of chromosome 11q heterozygosity have been known to be indicative of poor prognosis. In this article, we review how mutations and structural alterations in specific genes contribute to inheritable predisposition to neuroblastoma and/or to aggressive disease pathogenesis, as well as implications for diagnosis and therapy. These genes include PHOX2B (paired-like homeobox 2b), ALK (anaplastic lymphoma receptor tyrosine kinase), and ATRX (alpha thalassemia/mental retardation syndrome X-linked).


Subject(s)
Neuroblastoma/genetics , Anaplastic Lymphoma Kinase , Animals , DNA Helicases/genetics , Genetic Predisposition to Disease/genetics , Homeodomain Proteins/genetics , Humans , Loss of Heterozygosity/genetics , N-Myc Proto-Oncogene Protein , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcription Factors/genetics , X-linked Nuclear Protein
9.
PLoS One ; 6(12): e28356, 2011.
Article in English | MEDLINE | ID: mdl-22164278

ABSTRACT

BACKGROUND: MicroRNAs are small molecules which regulate gene expression post-transcriptionally and aberrant expression of several miRNAs is associated with neuroblastoma, a childhood cancer arising from precursor cells of the sympathetic nervous system. Amplification of the MYCN transcription factor characterizes the most clinically aggressive subtype of this disease, and although alteration of p53 signaling is not commonly found in primary tumors, deregulation of proteins involved in this pathway frequently arise in recurrent disease after pharmacological treatment. TH-MYCN is a well-characterized transgenic model of MYCN-driven neuroblastoma which recapitulates many clinicopathologic features of the human disease. Here, we evaluate the dysregulation of miRNAs in tumors from TH-MYCN mice that are either wild-type (TH-MYCN) or deficient (TH-MYCN/p53ER(TAM)) for the p53 tumor suppressor gene. PRINCIPAL FINDINGS: We analyzed the expression of 591 miRNAs in control (adrenal) and neuroblastoma tumor tissues derived from either TH-MYCN or TH-MYCN/p53ER(TAM) mice, respectively wild-type or deficient in p53. Comparing miRNA expression in tumor and control samples, we identified 159 differentially expressed miRNAs. Using data previously obtained from human neuroblastoma samples, we performed a comparison of miRNA expression between murine and human tumors to assess the concordance between murine and human expression data. Notably, the miR-17-5p-92 oncogenic polycistronic cluster, which is over-expressed in human MYCN amplified tumors, was over-expressed in mouse tumors. Moreover, analyzing miRNAs expression in a mouse model (TH-MYCN/p53ER(TAM)) possessing a transgenic p53 allele that drives the expression of an inactive protein, we identified miR-125b-3p and miR-676 as directly or indirectly regulated by the level of functional p53. SIGNIFICANCE: Our study represents the first miRNA profiling of an important mouse model of neuroblastoma. Similarities and differences in miRNAs expression between human and murine neuroblastoma were identified, providing important insight into the efficacy of this mouse model for assessing miRNA involvement in neuroblastoma and their potential effectiveness as therapeutic targets.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Neuroblastoma/metabolism , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , Adrenal Glands/metabolism , Animals , Cell Line, Tumor , Cluster Analysis , Disease Models, Animal , Humans , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neuroblastoma/genetics , Signal Transduction
10.
Neoplasia ; 10(12): 1373-82, following 1382, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19048116

ABSTRACT

Platelet-derived growth factor B (PDGF-B) overexpression induces gliomas of different grades from murine embryonic neural progenitors. For the first time, we formally demonstrated that PDGF-B-induced neoplasms undergo progression from nontumorigenic low-grade tumors toward highly malignant forms. This result, showing that PDGF-B signaling alone is insufficient to confer malignancy to cells, entails the requirement for further molecular lesions in this process. Our results indicate that one of these lesions is represented by the down-regulation of the oncosuppressor Btg2. By in vivo transplantation assays, we further demonstrate that fully progressed tumors are PDGF-B-addicted because their tumor-propagating ability is lost when the PDGF-B transgene is silenced, whereas it is promptly reacquired after its reactivation. We provide evidence that this oncogene addiction is not caused by the need for PDGF-B as a mitogen but, rather, to the fact that PDGF-B is required to overcome cell-cell contact inhibition and to confer in vivo infiltrating potential on tumor cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Glioma/pathology , Proto-Oncogene Proteins c-sis/metabolism , Animals , Brain/metabolism , Cell Communication , Cell Differentiation , Disease Progression , Flow Cytometry , Genes, Tumor Suppressor , Immediate-Early Proteins/metabolism , Mice , Mice, Inbred C57BL , Models, Biological , Oligodendroglioma/metabolism , Proto-Oncogene Proteins c-sis/physiology , Signal Transduction , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL