Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 9(1): 4301, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30867510

ABSTRACT

The high failure strain of thermoplastic elastomers (TPEs) is a very desirable feature for rechargeable Li-ion batteries by improving the lifetime of high specific capacity anode materials that undergo mechanical fractures induced by large volume variations. In this work, poly(styrene-b-2-hydroxyethyl acrylate) called PS-b-PHEA was synthesized by a nitroxide meditated polymerization method. Owing to the use of a specific polystyrene macroinitiator (SG1), a suitable TPE copolymer with long hydroxyethyl acrylate blocks to ensure good mechanical properties is obtained for the first time. We show that the electrochemical properties of the PS-b-PHEA-coated SnSb anode are drastically improved by suppressing the crack formation at the surface of the electrode. Indeed, electrochemical characterization revealed that a high and stable gravimetric capacity over 100 cycles could be achieved. Moreover, excellent capacity reversibility was achieved when cycled at multiple C-rates and fast kinetics confirming the strong protection role of the polymer. The advanced chemical and mechanical properties of PS-b-PHEA open up promising perspectives to significantly improve the electrochemical performance of all electrodes that are known to suffer from large volume variations.

2.
ACS Appl Mater Interfaces ; 8(26): 16670-6, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27282275

ABSTRACT

We report on the synthesis of an anode material for Li-ion batteries by anodization of a common MAX phase, Ti3SiC2, in an aqueous electrolyte containing hydrofluoric acid (HF). The anodization led to the formation of a porous film containing anatase, a small quantity of free carbon, and silica. By varying the anodization parameters, various oxide morphologies were produced. The highest areal capacity was achieved by anodization at 60 V in an aqueous electrolyte containing 0.1 v/v HF for 3 h at room temperature. After 140 cycles performed at multiple applied current densities, an areal capacity of 380 µAh·cm(-2) (200 µA·cm(-2)) has been obtained, making this new material, free of additives and binders, a promising candidate as a negative electrode for Li-ion microbatteries.

3.
ACS Appl Mater Interfaces ; 7(37): 20495-8, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26352212

ABSTRACT

We report the electrochemical performance of Si nanotube vertical arrays possessing thin porous sidewalls for Li-ion batteries. Porous Si nanotubes were fabricated on stainless steel substrates using a sacrificial ZnO nanowire template method. These porous Si nanotubes are stable at multiple C-rates. A second discharge capacity of 3095 mAh g(-1) with a Coulombic efficiency of 63% is attained at a rate of C/20 and a stable gravimetric capacity of 1670 mAh g(-1) obtained after 30 cycles. The high capacity values are attributed to the large surface area offered by the porosity of the 3D nanostructures, thereby promoting lithium-ion storage according to a pseudocapacitive mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL