Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Analyst ; 143(7): 1615-1623, 2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29497730

ABSTRACT

Vibrational ion spectroscopy techniques coupled with mass spectrometry are applied to standard metabolites as a proof-of-principle demonstration for the structural identification of unknown metabolites. The traditional room temperature infrared multiple photon dissociation (IRMPD) spectroscopy technique is shown to differentiate chemical moieties in isobaric and isomeric variants. These results are compared to infrared spectra of cryogenically cooled analyte ions, showing enhanced spectral resolution, and thus also improved differentiation between closely related molecules, such as isomers. The cryogenic spectroscopy is effected in a recently developed mass-selective cryogenic linear ion trap, which is capable of high sensitivity and the ability to measure the IR spectra of multiple analytes simultaneously.

2.
J Phys Chem A ; 122(37): 7427-7436, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30126276

ABSTRACT

The gas-phase infrared photodissociation (IRPD) spectra of solvent-tagged small biomolecules are studied in a cryogenic ion trap at 17 K. In this study para-aminobenzoic acid (PABA) and tyramine molecules are noncovalently tagged with water or acetonitrile in the electrospray ionization (ESI) source. The complexes are then cooled in the cryogenic trap prior to spectroscopic measurements. These molecules provide two putative sites for solvent attachment: the protonated amine (NH3+) and the OH groups. Comparisons of the experimental IR spectra to theoretical spectra obtained with density functional theory show that the NH3+ site is mainly favored. Evidence for the formation of both NH3-bound and OH-bound conformers is found only in tyramine, despite having similar solution- and gas-phase energetics to that of PABA. Since the structures cannot interconvert in the gas phase, this suggests an isomerization during the electrospray process.

3.
Int J Mass Spectrom ; 418: 148-155, 2017 07.
Article in English | MEDLINE | ID: mdl-28781574

ABSTRACT

The effects of electrospray ionization (ESI) solvent and source temperature on the relative abundance of the preferred solution-phase (N-protonated; i.e. amine) versus preferred gas-phase (O-protonated; i.e., acid) isomers of p-aminobenzoic acid (PABA) were investigated. When PABA was electrosprayed from protic solvents (i.e., methanol/water), the infrared multiple photon dissociation (IRMPD) spectrum recorded was consistent with that for O-protonation, according to both calculations and previous studies. When aprotic solvent (i.e., acetonitrile) was used, a different spectrum was recorded and was assigned to the N-protonated isomer. As the amine is the preferred protonation site in solution, this suggests that an isomerization takes place under certain conditions. Photodissociation at the diagnostic band for the O-protonated isomer (NH2 stretching mode) was used to quantify the relative contributions of each isomer to ion signal as a function of ESI conditions. For mixtures of methanol and acetonitrile, the relative contribution of the O-protonated gas-phase structure increased as a function of methanol content. Yet, substituting methanol for water resulted in a marked decrease of isomerization to the O-protonated structure. The source temperature (i.e., temperature of a heated desolvation capillary) was found to play a key role in determining the extent of isomerization, with higher temperatures yielding increased presence of gas-phase structures. These results are consistent with a protic bridge mechanism, in which the ESI droplet temperatures, dependent on endothermic desolvation and radiative heating from the capillary, may determine the isomerization yield.

4.
J Am Soc Mass Spectrom ; 29(11): 2115-2124, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30062479

ABSTRACT

We report on the performance of a cryogenic 2D linear ion trap (cryoLIT) that is shown to be mass-selective in the temperature range of 17-295 K. As the cryoLIT is cooled, the ejection voltages during the mass instability scan decrease, which results in an effective mass shift to lower m/z relative to room temperature. This is attributed to a decrease in trap radius caused by thermal contraction. Additionally, the cryoLIT generates reproducible mass spectra from day-to-day, and is capable of performing stored waveform inverse Fourier transform (SWIFT) mass isolation of fragile N2-tagged ions for the purpose of background-free infrared dissociation spectroscopy. Graphical Abstract ᅟ.

5.
J Mass Spectrom ; 52(11): 720-727, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28750482

ABSTRACT

We demonstrate operation of the first cryogenic 2D linear ion trap (LIT) with mass-selective capabilities. This trap presents a number of advantages for infrared ion "action" spectroscopy studies, particularly those employing the "tagging/messenger" spectroscopy approach. The high trapping efficiencies, trapping capacities, and low detection limits make 2D LITs a highly suitable choice for low-concentration analytes from scarce biological samples. In our trap, ions can be cooled down to cryogenic temperatures to achieve higher-resolution infrared spectra, and individual ions can be mass selected prior to irradiation for a background-free photodissociation scheme. Conveniently, multiple tagged analyte ions can be mass isolated and efficiently irradiated in the same experiment, allowing their infrared spectra to be recorded in parallel. This multiplexed approach is critical in terms of increasing the duty cycle of infrared ion spectroscopy, which is currently a key weakness of the technique. The compact design of this instrument, coupled with powerful mass selection capabilities, set the stage for making cryogenic infrared ion spectroscopy viable as a bioanalytical tool in small molecule identification.

6.
J Am Soc Mass Spectrom ; 27(5): 757-66, 2016 May.
Article in English | MEDLINE | ID: mdl-26975370

ABSTRACT

The detailed chemical information contained in the vibrational spectrum of a cryogenically cooled analyte ion would, in principle, make infrared (IR) ion spectroscopy a gold standard technique for molecular identification in mass spectrometry. Despite this immense potential, there are considerable challenges in both instrumentation and methodology to overcome before the technique is analytically useful. Here, we discuss the promise of IR ion spectroscopy for small molecule analysis in the context of metabolite identification. Experimental strategies to address sensitivity constraints, poor overall duty cycle, and speed of the experiment are intimately tied to the development of a mass-selective cryogenic trap. Therefore, the most likely avenues for success, in the authors' opinion, are presented here, alongside alternative approaches and some thoughts on data interpretation.


Subject(s)
Mass Spectrometry/methods , Spectrophotometry, Infrared/methods , Cold Temperature , Peptides/analysis , Peptides/chemistry , Proteins/analysis , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL