Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Publication year range
1.
Cell ; 183(2): 503-521.e19, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33007266

ABSTRACT

The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits/physiology , RGS Proteins/genetics , Animals , Female , GTP-Binding Protein Regulators/metabolism , GTP-Binding Protein alpha Subunits/genetics , HEK293 Cells , Humans , Kinetics , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Primary Cell Culture , Protein Binding , RGS Proteins/metabolism , RGS Proteins/physiology , Signal Transduction/genetics
2.
Cell ; 168(3): 339-341, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28129534

ABSTRACT

Wacker et al. report the crystal structure of LSD in complex with one of its major targets in the brain, the 5-HT2B receptor, the first such structure for any psychedelic drug. The results shed light on the molecular mechanisms underlying its ability to induce hallucinations with greater duration and potency than closely related compounds.


Subject(s)
Hallucinogens/pharmacology , Lysergic Acid Diethylamide/analogs & derivatives , Brain/drug effects
3.
Nat Rev Mol Cell Biol ; 17(7): 439-50, 2016 07.
Article in English | MEDLINE | ID: mdl-27093944

ABSTRACT

A revolution in the analysis of seven transmembrane domain (7TM) receptors has provided detailed information about how these physiologically important signalling proteins interact with extracellular cues. However, it has proved much more challenging to understand how 7TM receptors convey information to their principal intracellular targets: heterotrimeric G proteins, G protein-coupled receptor kinases and arrestins. Recent structures now suggest a common mechanism that enables these structurally diverse cytoplasmic proteins to 'hitch a ride' on hundreds of different activated 7TM receptors in order to instigate physiological change.


Subject(s)
Receptors, G-Protein-Coupled/physiology , Receptors, G-Protein-Coupled/ultrastructure , Animals , Binding Sites , Humans , Models, Molecular , Protein Conformation , Signal Transduction
4.
Nature ; 595(7868): 600-605, 2021 07.
Article in English | MEDLINE | ID: mdl-34262173

ABSTRACT

G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.


Subject(s)
G-Protein-Coupled Receptor Kinase 1/chemistry , Rhodopsin/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cattle , Cryoelectron Microscopy , Protein Structure, Tertiary , Signal Transduction
5.
Nat Methods ; 19(9): 1116-1125, 2022 09.
Article in English | MEDLINE | ID: mdl-35953671

ABSTRACT

An increasing number of protein structures are being determined by cryogenic electron microscopy (cryo-EM). Although the resolution of determined cryo-EM density maps is improving in general, there are still many cases where amino acids of a protein are assigned with different levels of confidence. Here we developed a method that identifies potential misassignment of residues in the map, including residue shifts along an otherwise correct main-chain trace. The score, named DAQ, computes the likelihood that the local density corresponds to different amino acids, atoms, and secondary structures, estimated via deep learning, and assesses the consistency of the amino acid assignment in the protein structure model with that likelihood. When DAQ was applied to different versions of model structures in the Protein Data Bank that were derived from the same density maps, a clear improvement in the DAQ score was observed in the newer versions of the models. DAQ also found potential misassignment errors in a substantial number of deposited protein structure models built into cryo-EM maps.


Subject(s)
Amino Acids , Proteins , Cryoelectron Microscopy , Models, Molecular , Protein Conformation , Protein Structure, Secondary , Proteins/chemistry
6.
Mol Pharmacol ; 104(4): 174-186, 2023 10.
Article in English | MEDLINE | ID: mdl-37474305

ABSTRACT

Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and ß-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gßγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and ß-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote ß-arrestin recruitment, ß-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and ß-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gßγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.


Subject(s)
Chemokine CXCL12 , Receptors, CXCR4 , Humans , beta-Arrestins/metabolism , Chemokine CXCL12/metabolism , G-Protein-Coupled Receptor Kinases/metabolism , HEK293 Cells , Ligands , Phosphorylation , Protein Binding , Receptors, CXCR4/metabolism
7.
J Biol Chem ; 298(9): 102279, 2022 09.
Article in English | MEDLINE | ID: mdl-35863432

ABSTRACT

G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.


Subject(s)
Arrestins , G-Protein-Coupled Receptor Kinases , Receptors, G-Protein-Coupled , Arrestins/metabolism , G-Protein-Coupled Receptor Kinases/metabolism , Humans , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology
8.
J Biol Chem ; 298(8): 102209, 2022 08.
Article in English | MEDLINE | ID: mdl-35779635

ABSTRACT

Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio1284-1959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Protein Serine-Threonine Kinases/chemistry , Rho Guanine Nucleotide Exchange Factors/chemistry , Animals , Cryoelectron Microscopy , Guanine Nucleotide Exchange Factors/metabolism , Humans , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , Uveal Neoplasms , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
9.
Proc Natl Acad Sci U S A ; 116(32): 15895-15900, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31337679

ABSTRACT

G protein-coupled receptor (GPCR) kinases (GRKs) are responsible for initiating desensitization of activated GPCRs. GRK5 is potently inhibited by the calcium-sensing protein calmodulin (CaM), which leads to nuclear translocation of GRK5 and promotion of cardiac hypertrophy. Herein, we report the architecture of the Ca2+·CaM-GRK5 complex determined by small-angle X-ray scattering and negative-stain electron microscopy. Ca2+·CaM binds primarily to the small lobe of the kinase domain of GRK5 near elements critical for receptor interaction and membrane association, thereby inhibiting receptor phosphorylation while activating the kinase for phosphorylation of soluble substrates. To define the role of each lobe of Ca2+·CaM, we utilized the natural product malbrancheamide as a chemical probe to show that the C-terminal lobe of Ca2+·CaM regulates membrane binding while the N-terminal lobe regulates receptor phosphorylation and kinase domain activation. In cells, malbrancheamide attenuated GRK5 nuclear translocation and effectively blocked the hypertrophic response, demonstrating the utility of this natural product and its derivatives in probing Ca2+·CaM-dependent hypertrophy.


Subject(s)
Biological Products/chemistry , Calmodulin/metabolism , G-Protein-Coupled Receptor Kinase 5/metabolism , Calcium/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Enzyme Activation/drug effects , G-Protein-Coupled Receptor Kinase 5/chemistry , Hypertrophy , Indole Alkaloids/chemistry , Indole Alkaloids/pharmacology , Models, Biological , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Phosphorylation/drug effects , Protein Domains , Protein Transport/drug effects , Substrate Specificity/drug effects
10.
J Lipid Res ; 62: 100089, 2021.
Article in English | MEDLINE | ID: mdl-34087196

ABSTRACT

Phospholipidosis, the excessive accumulation of phospholipids within lysosomes, is a pathological response observed following exposure to many drugs across multiple therapeutic groups. A clear mechanistic understanding of the causes and implications of this form of drug toxicity has remained elusive. We previously reported the discovery and characterization of a lysosome-specific phospholipase A2 (PLA2G15) and later reported that amiodarone, a known cause of drug-induced phospholipidosis, inhibits this enzyme. Here, we assayed a library of 163 drugs for inhibition of PLA2G15 to determine whether this phospholipase was the cellular target for therapeutics other than amiodarone that cause phospholipidosis. We observed that 144 compounds inhibited PLA2G15 activity. Thirty-six compounds not previously reported to cause phospholipidosis inhibited PLA2G15 with IC50 values less than 1 mM and were confirmed to cause phospholipidosis in an in vitro assay. Within this group, fosinopril was the most potent inhibitor (IC50 0.18 µM). Additional characterization of the inhibition of PLA2G15 by fosinopril was consistent with interference of PLA2G15 binding to liposomes. PLA2G15 inhibition was more accurate in predicting phospholipidosis compared with in silico models based on pKa and ClogP, measures of protonation, and transport-independent distribution in the lysosome, respectively. In summary, PLA2G15 is a primary target for cationic amphiphilic drugs that cause phospholipidosis, and PLA2G15 inhibition by cationic amphiphilic compounds provides a potentially robust screening platform for potential toxicity during drug development.


Subject(s)
Enzyme Inhibitors/pharmacology , Phospholipases A2/metabolism , Phospholipids/metabolism , Animals , Enzyme Inhibitors/chemistry , Humans , Lysosomes/enzymology , Phospholipases A2/genetics
11.
J Biol Chem ; 295(36): 12635-12647, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32661198

ABSTRACT

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) catalyzes the exchange of GDP for GTP on Rac GTPases, thereby triggering changes in the actin cytoskeleton and in transcription. Its overexpression is highly correlated with the metastasis of certain cancers. P-Rex1 recruitment to the plasma membrane and its activity are regulated via interactions with heterotrimeric Gßγ subunits, PIP3, and protein kinase A (PKA). Deletion analysis has further shown that domains C-terminal to its catalytic Dbl homology (DH) domain confer autoinhibition. Among these, the first dishevelled, Egl-10, and pleckstrin domain (DEP1) remains to be structurally characterized. DEP1 also harbors the primary PKA phosphorylation site, suggesting that an improved understanding of this region could substantially increase our knowledge of P-Rex1 signaling and open the door to new selective chemotherapeutics. Here we show that the DEP1 domain alone can autoinhibit activity in context of the DH/PH-DEP1 fragment of P-Rex1 and interacts with the DH/PH domains in solution. The 3.1 Å crystal structure of DEP1 features a domain swap, similar to that observed previously in the Dvl2 DEP domain, involving an exposed basic loop that contains the PKA site. Using purified proteins, we show that although DEP1 phosphorylation has no effect on the activity or solution conformation of the DH/PH-DEP1 fragment, it inhibits binding of the DEP1 domain to liposomes containing phosphatidic acid. Thus, we propose that PKA phosphorylation of the DEP1 domain hampers P-Rex1 binding to negatively charged membranes in cells, freeing the DEP1 domain to associate with and inhibit the DH/PH module.


Subject(s)
Cell Membrane , Guanine Nucleotide Exchange Factors , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cyclic AMP-Dependent Protein Kinases/chemistry , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Phosphorylation , Protein Domains
12.
Mol Pharmacol ; 97(6): 392-401, 2020 06.
Article in English | MEDLINE | ID: mdl-32234810

ABSTRACT

G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the µ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the µ-opioid receptor most efficaciously because it has the ability to cross cell membranes.


Subject(s)
Indazoles/chemistry , Paroxetine/chemistry , Pyrimidines/chemistry , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism , Animals , Blotting, Western , Cell Membrane Permeability , Crystallography, X-Ray , Female , HEK293 Cells , Humans , Indazoles/pharmacology , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Pyrimidines/pharmacology
13.
Mol Pharmacol ; 97(3): 226-236, 2020 03.
Article in English | MEDLINE | ID: mdl-31900312

ABSTRACT

Phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine-nucleotide exchange factor that was originally discovered in neutrophils and is regulated by G protein ßγ subunits and the lipid PIP3 in response to chemoattractants. P-Rex1 has also become increasingly recognized for its role in promoting metastasis of breast cancer, prostate cancer, and melanoma. Recent structural, biochemical, and biologic work has shown that binding of PIP3 to the pleckstrin homology (PH) domain of P-Rex1 is required for its activation in cells. Here, differential scanning fluorimetry was used in a medium-throughput screen to identify six small molecules that interact with the P-Rex1 PH domain and block binding of and activation by PIP3 Three of these compounds inhibit N-formylmethionyl-leucyl-phenylalanine induced spreading of human neutrophils as well as activation of the GTPase Rac2, both of which are downstream effects of P-Rex1 activity. Furthermore, one of these compounds reduces neutrophil velocity and inhibits neutrophil recruitment in response to inflammation in a zebrafish model. These results suggest that the PH domain of P-Rex1 is a tractable drug target and that these compounds might be useful for inhibiting P-Rex1 in other experimental contexts. SIGNIFICANCE STATEMENT: A set of small molecules identified in a thermal shift screen directed against the phosphatidylinositol (3,4,5) trisphosphate-dependent Rac exchanger 1 (P-Rex1) pleckstrin homology domain has effects consistent with P-Rex1 inhibition in neutrophils.


Subject(s)
Drug Discovery/methods , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/metabolism , Neutrophils/metabolism , Phosphatidylinositol Phosphates/metabolism , Animals , Binding Sites/drug effects , Binding Sites/physiology , Cells, Cultured , Crystallography, X-Ray/methods , Dose-Response Relationship, Drug , Drug Delivery Systems/methods , Guanine Nucleotide Exchange Factors/chemistry , Humans , Neutrophils/drug effects , Phosphatidylinositol Phosphates/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Zebrafish
14.
J Pharmacol Exp Ther ; 372(2): 193-204, 2020 02.
Article in English | MEDLINE | ID: mdl-31776208

ABSTRACT

Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.


Subject(s)
Apolipoprotein A-I/chemistry , Lipoproteins, HDL/pharmacokinetics , Nanoparticles/chemistry , Peptides/chemistry , Peptides/pharmacokinetics , Phospholipids/chemistry , Amino Acid Sequence , Animals , Atherosclerosis/prevention & control , Cholesterol/chemistry , Cholesterol/metabolism , Drug Delivery Systems , Drug Stability , Humans , Lipoproteins, HDL/administration & dosage , Lipoproteins, HDL/chemistry , Male , Molecular Structure , Nanoparticles/administration & dosage , Peptides/administration & dosage , Plaque, Atherosclerotic/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship
15.
Protein Expr Purif ; 168: 105547, 2020 04.
Article in English | MEDLINE | ID: mdl-31786308

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in humans and regulate numerous physiological processes through the activation of heterotrimeric G proteins. GPCR kinases (GRKs) selectively phosphorylate active GPCRs, which promotes arrestin binding, receptor internalization, and initiation of alternative signaling pathways. GRK5 is a representative member of one of three GRK subfamilies that does not need post-translational lipidation or other binding partners to exhibit full activity against GPCRs, rendering it a useful tool for biophysical studies directed at characterizing GRK function. However, recombinant expression of GRK5 has thus far been limited to insect and mammalian systems. Here, we describe the expression of functional GRK5 in E. coli and its purification and biochemical characterization. Bacterially expressed GRK5 is hyperphosphorylated, primarily in regions known to be flexible from prior crystal structures, which slightly decreases its catalytic activity toward receptor substrates. Mutation of a single phosphorylation site, Thr10, restores kinetic parameters to those of GRK5 purified from insect cells. Consequently, bacterial expression will allow for production of GRK5 at a reduced cost and faster pace and would facilitate production of isotopically labeled kinase for NMR studies or for the incorporation of unnatural amino acids.


Subject(s)
Adenosine Triphosphate/chemistry , G-Protein-Coupled Receptor Kinase 5/chemistry , Protein Processing, Post-Translational , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , G-Protein-Coupled Receptor Kinase 5/genetics , G-Protein-Coupled Receptor Kinase 5/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
16.
Biochemistry ; 58(13): 1709-1717, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30830753

ABSTRACT

Lysosomal phospholipase A2 (LPLA2/PLA2G15) is a key enzyme involved in lipid homeostasis and is characterized by both phospholipase A2 and transacylase activity and by an acidic pH optimum. Divalent cations such as Ca2+ and Mg2+ have previously been shown to have little effect on the activity of LPLA2, but the discovery of a novel crystal form of LPLA2 with Zn2+ bound in the active site suggested a role for this divalent cation in regulating enzyme activity. In this complex, the cation directly coordinates the serine and histidine of the α/ß-hydrolase triad and stabilizes a closed conformation. This closed conformation is characterized by an inward shift of the lid loop, which extends over the active site and effectively blocks access to one of its lipid acyl chain binding tracks. Therefore, we hypothesized that Zn2+ would inhibit LPLA2 activity at a neutral but not acidic pH because histidine would be positively charged at lower pH. Indeed, Zn2+ was found to inhibit the esterase activity of LPLA2 in a noncompetitive manner exclusively at a neutral pH (between 6.5 and 8.0). Because lysosomes are reservoirs of Zn2+ in cells, the pH optimum of LPLA2 might allow it to catalyze acyl transfer unimpeded within the organelle. We conjecture that Zn2+ inhibition of LPLA2 at higher pH maintains a lower activity of the esterase in environments where its activity is not typically required.


Subject(s)
Acyltransferases/metabolism , Lysosomes/enzymology , Phospholipases A2/metabolism , Zinc/metabolism , Acyltransferases/chemistry , Animals , Binding Sites , Catalytic Domain , Enzyme Stability , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Mice , Molecular Docking Simulation , Phospholipases A2/chemistry , Protein Binding , Protein Conformation
17.
J Biol Chem ; 293(21): 8113-8127, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29643184

ABSTRACT

Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


Subject(s)
Cell Membrane/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Hemopexin/metabolism , Matrix Metalloproteinase 14/physiology , Animals , Crystallography, X-Ray , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Binding , Protein Transport
18.
J Labelled Comp Radiopharm ; 62(5): 202-208, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30828860

ABSTRACT

As part of a program toward making analogues of amlexanox (1), currently under clinical investigation for the treatment of type 2 diabetes and obesity, we have synthesized derivative 5 in which deuterium has been introduced into two sites of metabolism on the C-7 isopropyl function of amlexanox. The synthesis of 5 was completed in an efficient three-step process utilizing reduction of key olefin 7b to 8 by Wilkinson's catalyst to provide specific incorporation of di-deuterium across the double bond. Compound 5 displayed nearly equivalent potency to amlexanox (IC50 , 1.1µM vs 0.6µM, respectively) against recombinant human TBK1. When incubated with human, rat, and mouse liver microsomes, amlexanox (1) and d2 -amlexanox (5) were stable (t1/2  > 60 minutes) with 1 showing marginally greater stability relative to 5 except for rat liver microsomes. These data show that incorporating deuterium into two sites of metabolism does not majorly suppress Cyp-mediated metabolism relative to amlexanox.


Subject(s)
Aminopyridines/chemical synthesis , Aminopyridines/metabolism , Deuterium/chemistry , Microsomes/metabolism , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Chemistry Techniques, Synthetic , Drug Stability , Humans , Isotope Labeling , Kinetics , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Rats
19.
J Lipid Res ; 59(7): 1205-1218, 2018 07.
Article in English | MEDLINE | ID: mdl-29724779

ABSTRACT

Lysosomal phospholipase A2 (LPLA2) is characterized by broad substrate recognition, peak activity at acidic pH, and the transacylation of lipophilic alcohols, especially N-acetyl-sphingosine. Prior structural analysis of LPLA2 revealed the presence of an atypical acidic residue, Asp13, in the otherwise hydrophobic active site cleft. We hypothesized that Asp13 contributed to the pH profile and/or substrate preference of LPLA2 for unsaturated acyl chains. To test this hypothesis, we substituted Asp13 for alanine, cysteine, or phenylalanine; then, we monitored the formation of 1-O-acyl-N-acetylsphingosine to measure the hydrolysis of sn-1 versus sn-2 acyl groups on a variety of glycerophospholipids. Substitutions with Asp13 yielded significant enzyme activity at neutral pH (7.4) and perturbed the selectivity for mono- and double-unsaturated acyl chains. However, this position played no apparent role in selecting for either the acyl acceptor or the head group of the glycerophospholipid. Our modeling indicates that Asp13 and its substitutions contribute to the pH activity profile of LPLA2 and to acyl chain selectivity by forming part of a hydrophobic track occupied by the scissile acyl chain.


Subject(s)
Lysosomes/enzymology , Phospholipases A2/metabolism , Acylation , Humans , Hydrogen-Ion Concentration , Hydrolysis , Models, Molecular , Mutation , Phospholipases A2/chemistry , Phospholipases A2/genetics , Protein Structure, Tertiary , Substrate Specificity
20.
Mol Pharmacol ; 94(4): 1210-1219, 2018 10.
Article in English | MEDLINE | ID: mdl-30082428

ABSTRACT

Chronic low-grade inflammation is a hallmark of obesity, which is a risk factor for the development of type 2 diabetes. The drug amlexanox inhibits IκB kinase ε (IKKε) and TANK binding kinase 1 (TBK1) to promote energy expenditure and improve insulin sensitivity. Clinical studies have demonstrated efficacy in a subset of diabetic patients with underlying adipose tissue inflammation, albeit with moderate potency, necessitating the need for improved analogs. Herein we report crystal structures of TBK1 in complex with amlexanox and a series of analogs that modify its carboxylic acid moiety. Removal of the carboxylic acid or mutation of the adjacent Thr156 residue significantly reduces potency toward TBK1, whereas conversion to a short amide or ester nearly abolishes the inhibitory effects. IKKε is less affected by these modifications, possibly due to variation in its hinge that allows for increased conformational plasticity. Installation of a tetrazole carboxylic acid bioisostere improved potency to 200 and 400 nM toward IKKε and TBK1, respectively. Despite improvements in the in vitro potency, no analog produced a greater response in adipocytes than amlexanox, perhaps because of altered absorption and distribution. The structure-activity relationships and cocrystal structures described herein will aid in future structure-guided inhibitor development using the amlexanox pharmacophore for the treatment of obesity and type 2 diabetes.


Subject(s)
Aminopyridines/pharmacology , Carboxylic Acids/pharmacology , I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism/drug effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL