Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(2): 296-300, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064983

ABSTRACT

The SARS-CoV-2 pandemic has revealed that Africa needs a new public health order to be resilient, to adapt, and to cope with 21st-century disease threats. The new order will need strengthened continental and national public health institutions; local manufacturing of vaccines, therapeutics, and diagnostics; attraction, training, and retention of a public health workforce; and fostering of respectful local and international partnerships.


Subject(s)
Communicable Diseases/therapy , Public Health , Africa , Communicable Disease Control , Communicable Diseases/diagnosis , Health Occupations/education , Health Workforce , Humans , International Cooperation , Public Health/education , Public Health Administration
2.
PLoS Biol ; 20(8): e3001769, 2022 08.
Article in English | MEDLINE | ID: mdl-35998195

ABSTRACT

We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.


Subject(s)
Monkeypox virus , Mpox (monkeypox) , Disease Outbreaks , Genomics , Humans , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics
4.
Malar J ; 22(1): 376, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087335

ABSTRACT

BACKGROUND: Plasmodium falciparum genetic diversity can add information on transmission intensity and can be used to track control and elimination interventions. METHODS: Dried blood spots (DBS) were collected from patients who were recruited for a P. falciparum malaria therapeutic efficacy trial in three malaria endemic sites in Ethiopia from October to December 2015, and November to December 2019. qPCR-confirmed infections were subject to amplicon sequencing of polymorphic markers ama1-D3, csp, cpp, cpmp, msp7. Genetic diversity, the proportion of multiclonal infections, multiplicity of infection, and population structure were analysed. RESULTS: Among 198 samples selected for sequencing, data was obtained for 181 samples. Mean MOI was 1.38 (95% CI 1.24-1.53) and 17% (31/181) of infections were polyclonal. Mean He across all markers was 0.730. Population structure was moderate; populations from Metema and Metehara 2015 were very similar to each other, but distinct from Wondogent 2015 and Metehara 2019. CONCLUSION: The high level of parasite genetic diversity and moderate population structure in this study suggests frequent gene flow of parasites among sites. The results obtained can be used as a baseline for additional parasite genetic diversity and structure studies, aiding in the formulation of appropriate control strategies in Ethiopia.


Subject(s)
Malaria, Falciparum , Parasites , Humans , Animals , Plasmodium falciparum/genetics , Ethiopia/epidemiology , Genetic Variation , Malaria, Falciparum/parasitology , High-Throughput Nucleotide Sequencing
5.
J Infect Dis ; 225(7): 1227-1237, 2022 04 01.
Article in English | MEDLINE | ID: mdl-32840625

ABSTRACT

BACKGROUND: Targeted next-generation sequencing offers the potential for consistent, deep coverage of information-rich genomic regions to characterize polyclonal Plasmodium falciparum infections. However, methods to identify and sequence these genomic regions are currently limited. METHODS: A bioinformatic pipeline and multiplex methods were developed to identify and simultaneously sequence 100 targets and applied to dried blood spot (DBS) controls and field isolates from Mozambique. For comparison, whole-genome sequencing data were generated for the same controls. RESULTS: Using publicly available genomes, 4465 high-diversity genomic regions suited for targeted sequencing were identified, representing the P. falciparum heterozygome. For this study, 93 microhaplotypes with high diversity (median expected heterozygosity = 0.7) were selected along with 7 drug resistance loci. The sequencing method achieved very high coverage (median 99%), specificity (99.8%), and sensitivity (90% for haplotypes with 5% within sample frequency in dried blood spots with 100 parasites/µL). In silico analyses revealed that microhaplotypes provided much higher resolution to discriminate related from unrelated polyclonal infections than biallelic single-nucleotide polymorphism barcodes. CONCLUSIONS: The bioinformatic and laboratory methods outlined here provide a flexible tool for efficient, low-cost, high-throughput interrogation of the P. falciparum genome, and can be tailored to simultaneously address multiple questions of interest in various epidemiological settings.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Haplotypes , High-Throughput Nucleotide Sequencing/methods , Humans , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Whole Genome Sequencing/methods
6.
Lancet ; 395(10233): 1361-1373, 2020 04 25.
Article in English | MEDLINE | ID: mdl-32334702

ABSTRACT

BACKGROUND: In low malaria-endemic settings, screening and treatment of individuals in close proximity to index cases, also known as reactive case detection (RACD), is practised for surveillance and response. However, other approaches could be more effective for reducing transmission. We aimed to evaluate the effectiveness of reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in the low malaria-endemic setting of Zambezi (Namibia). METHODS: We did a cluster-randomised controlled, open-label trial using a two-by-two factorial design of 56 enumeration area clusters in the low malaria-endemic setting of Zambezi (Namibia). We randomly assigned these clusters using restricted randomisation to four groups: RACD only, rfMDA only, RAVC plus RACD, or rfMDA plus RAVC. RACD involved rapid diagnostic testing and treatment with artemether-lumefantrine and single-dose primaquine, rfMDA involved presumptive treatment with artemether-lumefantrine, and RAVC involved indoor residual spraying with pirimiphos-methyl. Interventions were administered within 500 m of index cases. To evaluate the effectiveness of interventions targeting the parasite reservoir in humans (rfMDA vs RACD), in mosquitoes (RAVC vs no RAVC), and in both humans and mosquitoes (rfMDA plus RAVC vs RACD only), an intention-to-treat analysis was done. For each of the three comparisons, the primary outcome was the cumulative incidence of locally acquired malaria cases. This trial is registered with ClinicalTrials.gov, number NCT02610400. FINDINGS: Between Jan 1, 2017, and Dec 31, 2017, 55 enumeration area clusters had 1118 eligible index cases that led to 342 interventions covering 8948 individuals. The cumulative incidence of locally acquired malaria was 30·8 per 1000 person-years (95% CI 12·8-48·7) in the clusters that received rfMDA versus 38·3 per 1000 person-years (23·0-53·6) in the clusters that received RACD; 30·2 per 1000 person-years (15·0-45·5) in the clusters that received RAVC versus 38·9 per 1000 person-years (20·7-57·1) in the clusters that did not receive RAVC; and 25·0 per 1000 person-years (5·2-44·7) in the clusters that received rfMDA plus RAVC versus 41·4 per 1000 person-years (21·5-61·2) in the clusters that received RACD only. After adjusting for imbalances in baseline and implementation factors, the incidence of malaria was lower in clusters receiving rfMDA than in those receiving RACD (adjusted incidence rate ratio 0·52 [95% CI 0·16-0·88], p=0·009), lower in clusters receiving RAVC than in those that did not (0·48 [0·16-0·80], p=0·002), and lower in clusters that received rfMDA plus RAVC than in those receiving RACD only (0·26 [0·10-0·68], p=0·006). No serious adverse events were reported. INTERPRETATION: In a low malaria-endemic setting, rfMDA and RAVC, implemented alone and in combination, reduced malaria transmission and should be considered as alternatives to RACD for elimination of malaria. FUNDING: Novartis Foundation, Bill & Melinda Gates Foundation, and Horchow Family Fund.


Subject(s)
Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/prevention & control , Mass Drug Administration/methods , Mosquito Control , Antimalarials/administration & dosage , Artemether, Lumefantrine Drug Combination/administration & dosage , Cluster Analysis , Humans , Malaria, Falciparum/epidemiology , Mosquito Control/methods , Namibia/epidemiology , Plasmodium falciparum , Seroepidemiologic Studies
7.
Malar J ; 20(1): 116, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637093

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) is becoming increasingly useful to study the biology, epidemiology, and ecology of malaria parasites. Despite ease of sampling, DNA extracted from dried blood spots (DBS) has a high ratio of human DNA compared to parasite DNA, which poses a challenge for downstream genetic analyses. The effects of multiple methods for DNA extraction, digestion of methylated DNA, and amplification were evaluated on the quality and fidelity of WGS data recovered from DBS. METHODS: Low parasite density mock DBS samples were created, extracted either with Tween-Chelex or QIAamp, treated with or without McrBC, and amplified with one of three different amplification techniques (two sWGA primer sets and one rWGA). Extraction conditions were evaluated on performance of sequencing depth, percentiles of coverage, and expected SNP concordance. RESULTS: At 100 parasites/µL, Chelex-Tween-McrBC samples had higher coverage (5 × depth = 93% genome) than QIAamp extracted samples (5 × depth = 76% genome). The two evaluated sWGA primer sets showed minor differences in overall genome coverage and SNP concordance, with a newly proposed combination of 20 primers showing a modest improvement in coverage over those previously published. CONCLUSIONS: Overall, Tween-Chelex extracted samples that were treated with McrBC digestion and are amplified using 6A10AD sWGA conditions had minimal dropout rate, higher percentages of coverage at higher depth, and more accurate SNP concordance than QiaAMP extracted samples. These findings extend the results of previously reported methods, making whole genome sequencing accessible to a larger number of low density samples that are commonly encountered in cross-sectional surveys.


Subject(s)
Dried Blood Spot Testing/instrumentation , Whole Genome Sequencing/methods , Humans , Plasmodium falciparum/genetics , Whole Genome Sequencing/instrumentation
8.
Malar J ; 20(1): 96, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33593382

ABSTRACT

BACKGROUND: South Africa aims to eliminate malaria transmission by 2023. However, despite sustained vector control efforts and case management interventions, the Vhembe District remains a malaria transmission hotspot. To better understand Plasmodium falciparum transmission dynamics in the area, this study characterized the genetic diversity of parasites circulating within the Vhembe District. METHODS: A total of 1153 falciparum-positive rapid diagnostic tests (RDTs) were randomly collected from seven clinics within the district, over three consecutive years (2016, 2017 and 2018) during the wet and dry malaria transmission seasons. Using 26 neutral microsatellite markers, differences in genetic diversity were described using a multiparameter scale of multiplicity of infection (MOI), inbreeding metric (Fws), number of unique alleles (A), expected heterozygosity (He), multilocus linkage disequilibrium (LD) and genetic differentiation, and were associated with temporal and geospatial variances. RESULTS: A total of 747 (65%) samples were successfully genotyped. Moderate to high genetic diversity (mean He = 0.74 ± 0.03) was observed in the parasite population. This was ascribed to high allelic richness (mean A = 12.2 ± 1.2). The majority of samples (99%) had unique multi-locus genotypes, indicating high genetic diversity in the sample set. Complex infections were observed in 66% of samples (mean MOI = 2.13 ± 0.04), with 33% of infections showing high within-host diversity as described by the Fws metric. Low, but significant LD (standardised index of association, ISA = 0.08, P < 0.001) was observed that indicates recombination of distinct clones. Limited impact of temporal (FST range - 0.00005 to 0.0003) and spatial (FST = - 0.028 to 0.023) variation on genetic diversity existed during the sampling timeframe and study sites respectively. CONCLUSIONS: Consistent with the Vhembe District's classification as a 'high' transmission setting within South Africa, P. falciparum diversity in the area was moderate to high and complex. This study showed that genetic diversity within the parasite population reflects the continued residual transmission observed in the Vhembe District. This data can be used as a reference point for the assessment of the effectiveness of on-going interventions over time, the identification of imported cases and/or outbreaks, as well as monitoring for the potential spread of anti-malarial drug resistance.


Subject(s)
Genetic Variation , Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , South Africa , Young Adult
9.
Malar J ; 20(1): 68, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33531029

ABSTRACT

BACKGROUND: Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS: All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS: As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS: Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.


Subject(s)
Genotype , Malaria, Falciparum/epidemiology , Microsatellite Repeats , Plasmodium falciparum/genetics , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Humans , Incidence , Malaria, Falciparum/parasitology , Middle Aged , Uganda/epidemiology , Young Adult
10.
Malar J ; 19(1): 244, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32660491

ABSTRACT

BACKGROUND: Current methods to classify local and imported malaria infections depend primarily on patient travel history, which can have limited accuracy. Genotyping has been investigated as a complementary approach to track the spread of malaria and identify the origin of imported infections. METHODS: An extended panel of 26 microsatellites (16 new microsatellites) for Plasmodium falciparum was evaluated in 602 imported infections from 26 sub-Saharan African countries to the Jiangsu Province of People's Republic of China. The potential of the 26 microsatellite markers to assign imported parasites to their geographic origin was assessed using a Bayesian method with Markov Chain Monte Carlo (MCMC) as implemented in the program Smoothed and Continuous Assignments (SCAT) with a modification to incorporate haploid genotype data. RESULTS: The newly designed microsatellites were polymorphic and are not in linkage disequilibrium with the existing microsatellites, supporting previous findings of high rate of recombination in sub-Saharan Africa. Consistent with epidemiology inferred from patients' travel history, no evidence for local transmission was found; nearly all genetically related infections were identified in people who travelled to the same country near the same time. The smoothing assignment method assigned imported cases to their likely geographic origin with an accuracy (Angola: 59%; Nigeria: 51%; Equatorial Guinea: 40%) higher than would be achieved at random, reaching statistical significance for Angola and Equatorial Guinea. CONCLUSIONS: Genotyping using an extended microsatellite panel is valuable for malaria case classification and programme evaluation in an elimination setting. A Bayesian method for assigning geographic origin of mammals based on genetic data was adapted for malaria and showed potential for identification of the origin of imported infections.


Subject(s)
Communicable Diseases, Imported/transmission , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Travel , Angola , China , Equatorial Guinea , Humans , Microsatellite Repeats , Nigeria
11.
Malar J ; 19(1): 152, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295590

ABSTRACT

BACKGROUND: KwaZulu-Natal, one of South Africa's three malaria endemic provinces, is nearing malaria elimination, reporting fewer than 100 locally-acquired cases annually since 2010. Despite sustained implementation of essential interventions, including annual indoor residual spraying, prompt case detection using malaria rapid diagnostics tests and treatment with effective artemisinin-based combination therapy, low-level focal transmission persists in the province. This malaria prevalence and entomological survey was therefore undertaken to identify the drivers of this residual transmission. METHODS: Malaria prevalence as well as malaria knowledge, attitudes and practices among community members and mobile migrant populations within uMkhanyakude district, KwaZulu-Natal were assessed during a community-based malaria prevalence survey. All consenting participants were tested for malaria by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Finger-prick filter-paper blood spots were also collected from all participants for downstream parasite genotyping analysis. Entomological investigations were conducted around the surveyed households, with potential breeding sites geolocated and larvae collected for species identification and insecticide susceptibility testing. A random selection of households were assessed for indoor residual spray quality by cone bioassay. RESULTS: A low malaria prevalence was confirmed in the study area, with only 2% (67/2979) of the participants found to be malaria positive by both conventional and highly-sensitive falciparum-specific rapid diagnostic tests. Malaria prevalence however differed markedly between the border market and community (p < 0001), with the majority of the detected malaria carriers (65/67) identified as asymptomatic Mozambican nationals transiting through the informal border market from Mozambique to economic hubs within South Africa. Genomic analysis of the malaria isolates revealed a high degree of heterozygosity and limited genetic relatedness between the isolates supporting the hypothesis of limited local malaria transmission within the province. New potential vector breeding sites, potential vector populations with reduced insecticide susceptibility and areas with sub-optimal vector intervention coverage were identified during the entomological investigations. CONCLUSION: If KwaZulu-Natal is to successfully halt local malaria transmission and prevent the re-introduction of malaria, greater efforts need to be placed on detecting and treating malaria carriers at both formal and informal border crossings with transmission blocking anti-malarials, while ensuring optimal coverage of vector control interventions is achieved.


Subject(s)
Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , Malaria/epidemiology , Malaria/transmission , Asymptomatic Infections/epidemiology , Disease Eradication , Endemic Diseases/statistics & numerical data , Humans , Prevalence , South Africa/epidemiology
12.
J Infect Dis ; 219(8): 1254-1263, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30445612

ABSTRACT

BACKGROUND: Southern Province, Zambia has experienced a dramatic decline in Plasmodium falciparum malaria transmission in the past decade and is targeted for elimination. Zambia's National Malaria Elimination Program recommends reactive case detection (RCD) within 140 m of index households to enhance surveillance and eliminate remaining transmission foci. METHODS: To evaluate whether RCD captures local transmission, we genotyped 26 microsatellites from 106 samples collected from index (n = 27) and secondary (n = 79) cases detected through RCD in the Macha Hospital catchment area between January 2015 and April 2016. RESULTS: Participants from the same RCD event harbored more genetically related parasites than those from different RCD events, suggesting that RCD captures, at least in part, infections related through local transmission. Related parasites clustered in space and time, up to at least 250 m from index households. Spatial analysis identified a putative focal transmission hotspot. CONCLUSIONS: The current RCD strategy detects focal transmission events, although programmatic guidelines to screen within 140 m of index households may fail to capture all secondary cases. This study highlights the utility of parasite genetic data in assessing programmatic interventions, and similar approaches may be useful to malaria elimination programs seeking to tailor intervention strategies to the underlying transmission epidemiology.


Subject(s)
Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Disease Eradication/methods , Genotyping Techniques , Humans , Malaria, Falciparum/parasitology , Microsatellite Repeats/genetics , Population Surveillance , Spatio-Temporal Analysis , Zambia/epidemiology
13.
J Infect Dis ; 220(8): 1346-1354, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31190073

ABSTRACT

BACKGROUND: To better understand transmission dynamics, we characterized Plasmodium falciparum genetic diversity in Eswatini, where transmission is low and sustained by importation. METHODS: Twenty-six P. falciparum microsatellites were genotyped in 66% of confirmed cases (2014-2016; N = 582). Population and within-host diversity were used to characterize differences between imported and locally acquired infections. Logistic regression was used to assess the added value of diversity metrics to classify imported and local infections beyond epidemiology data alone. RESULTS: Parasite population in Eswatini was highly diverse (expected heterozygosity [HE] = 0.75) and complex: 67% polyclonal infections, mean multiplicity of infection (MOI) 2.2, and mean within-host infection fixation index (FWS) 0.84. Imported cases had comparable diversity to local cases but exhibited higher MOI (2.4 vs 2.0; P = .004) and lower mean FWS (0.82 vs 0.85; P = .03). Addition of MOI and FWS to multivariate analyses did not increase discrimination between imported and local infections. CONCLUSIONS: In contrast to the common perception that P. falciparum diversity declines with decreasing transmission intensity, Eswatini isolates exhibited high parasite diversity consistent with high rates of malaria importation and limited local transmission. Estimates of malaria transmission intensity from genetic data need to consider the effect of importation, especially as countries near elimination.


Subject(s)
Communicable Diseases, Imported/virology , DNA, Protozoan/genetics , Genome, Protozoan/genetics , Malaria, Falciparum/virology , Plasmodium falciparum/genetics , Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/transmission , DNA, Protozoan/isolation & purification , Epidemiological Monitoring , Eswatini/epidemiology , Genetic Variation , Humans , Incidence , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Microsatellite Repeats , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity
14.
Malar J ; 18(1): 268, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31477139

ABSTRACT

Next-generation sequencing (NGS) technologies are increasingly being used to address a diverse range of biological and epidemiological questions. The current understanding of malaria transmission dynamics and parasite movement mainly relies on the analyses of epidemiologic data, e.g. case counts and self-reported travel history data. However, travel history data are often not routinely collected or are incomplete, lacking the necessary level of accuracy. Although genetic data from routinely collected field samples provides an unprecedented opportunity to track the spread of malaria parasites, it remains an underutilized resource for surveillance due to lack of local awareness and capacity, limited access to sensitive laboratory methods and associated computational tools and difficulty in interpreting genetic epidemiology data. In this review, the potential roles of NGS in better understanding of transmission patterns, accurately tracking parasite movement and addressing the emerging challenges of imported malaria in low transmission settings of sub-Saharan Africa are discussed. Furthermore, this review highlights the insights gained from malaria genomic research and challenges associated with integrating malaria genomics into existing surveillance tools to inform control and elimination strategies.


Subject(s)
Genomics , High-Throughput Nucleotide Sequencing , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/genetics , Africa South of the Sahara/epidemiology , Epidemiological Monitoring , Humans , Incidence , Malaria, Falciparum/parasitology , Population Surveillance , Protozoan Proteins/genetics
15.
J Infect Dis ; 218(6): 946-955, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29718283

ABSTRACT

A better understanding of the drivers of the spread of malaria parasites and drug resistance across space and time is needed. These drivers can be elucidated using genetic tools. Here, a novel molecular inversion probe (MIP) panel targeting all major drug-resistance mutations and a set of microsatellites was used to genotype Plasmodium falciparum infections of 552 children from the 2013-2014 Demographic and Health Survey conducted in the Democratic Republic of the Congo (DRC). Microsatellite-based analysis of population structure suggests that parasites within the DRC form a homogeneous population. In contrast, sulfadoxine-resistance markers in dihydropteroate synthase show marked spatial structure with ongoing spread of double and triple mutants compared with 2007. These findings suggest that parasites in the DRC remain panmictic despite rapidly spreading antimalarial-resistance mutations. Moreover, highly multiplexed targeted sequencing using MIPs emerges as a cost-effective method for elucidating pathogen genetics in complex infections in large cohorts.


Subject(s)
Drug Resistance , High-Throughput Nucleotide Sequencing/methods , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/genetics , Child , Democratic Republic of the Congo/epidemiology , Female , Humans , Malaria, Falciparum/drug therapy , Male , Microsatellite Repeats , Plasmodium falciparum/drug effects , Population Surveillance , Sulfadoxine/pharmacology , Surveys and Questionnaires
16.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29784862

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLß domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLß3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLß3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLß3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLß sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLß domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Biomarkers/blood , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/genetics , Child, Preschool , Endothelial Protein C Receptor/metabolism , Female , Follow-Up Studies , Genetic Variation , Humans , Incidence , Infant , Intercellular Adhesion Molecule-1/metabolism , Malaria, Falciparum/epidemiology , Malaria, Falciparum/pathology , Male , Papua New Guinea/epidemiology , Phylogeny , Protein Binding , Protein Domains/immunology , Protozoan Proteins/genetics , Risk Assessment
17.
BMC Med ; 16(1): 190, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30333020

ABSTRACT

BACKGROUND: Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS: The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION: A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.


Subject(s)
Genomics/methods , Malaria/diagnosis , Malaria/genetics , Parasites/pathogenicity , Animals , Humans , Malaria/pathology , Malaria, Falciparum/epidemiology
18.
BMC Med ; 16(1): 241, 2018 12 28.
Article in English | MEDLINE | ID: mdl-30591060

ABSTRACT

The original article [1] contained an error in the presentation of Figure 1; this error has now been rectified and Figure 1 is now presented correctly.

19.
Mol Ecol ; 24(2): 484-97, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25482097

ABSTRACT

Plasmodium falciparum malaria is a major global health problem that is being targeted for progressive elimination. Knowledge of local disease transmission patterns in endemic countries is critical to these elimination efforts. To investigate fine-scale patterns of malaria transmission, we have compared repertoires of rapidly evolving var genes in a highly endemic area. A total of 3680 high-quality DBLα-sequences were obtained from 68 P. falciparum isolates from ten villages spread over two distinct catchment areas on the north coast of Papua New Guinea (PNG). Modelling of the extent of var gene diversity in the two parasite populations predicts more than twice as many var gene alleles circulating within each catchment (Mugil = 906; Wosera = 1094) than previously recognized in PNG (Amele = 369). In addition, there were limited levels of var gene sharing between populations, consistent with local parasite population structure. Phylogeographic analyses demonstrate that while neutrally evolving microsatellite markers identified population structure only at the catchment level, var gene repertoires reveal further fine-scale geospatial clustering of parasite isolates. The clustering of parasite isolates by village in Mugil, but not in Wosera was consistent with the physical and cultural isolation of the human populations in the two catchments. The study highlights the microheterogeneity of P. falciparum transmission in highly endemic areas and demonstrates the potential of var genes as markers of local patterns of parasite population structure.


Subject(s)
Genetic Variation , Genetics, Population , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Alleles , Cluster Analysis , DNA, Protozoan/genetics , Malaria, Falciparum/parasitology , Microsatellite Repeats , Models, Genetic , Molecular Sequence Data , Papua New Guinea , Phylogeography , Sequence Analysis, DNA
20.
Lancet Infect Dis ; 24(2): e106-e112, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37778362

ABSTRACT

Next-generation sequencing (NGS) of genomic data has established its fundamental value in public health surveillance, research and development, and precision medicine. In Africa, severe shortages of competent experts in genomics and bioinformatics, few opportunities for research, and inadequate genomic infrastructure have had a knock-on effect on the use of NGS technologies for research and public health practice. Several reasons-ranging from poor funding, inadequate infrastructure for training and practice, to brain drain-might partly account for the scarcity of genomics and bioinformatics expertise in the region. In recognition of these shortcomings and the importance of NGS genomic data, which was amplified during the COVID-19 pandemic in mid-2021, the Africa Centres for Disease Control and Prevention (Africa CDC) through the Africa Pathogen Genomics Initiative began building and expanding Africa's workforce in pathogen surveillance. By the end of 2022, the Africa CDC in collaboration with its partners and centres of excellence had trained 413 personnel, mostly from public health institutions, in 53 (96%) of 55 African Union Member States. Although this training has increased genomics, bioinformatics, and genomic epidemiology literacy, and genomic-informed pathogen surveillance, there is still a need for a strategic and sustainable public health workforce development in Africa.


Subject(s)
Genomics , Pandemics , Humans , Africa/epidemiology , Computational Biology , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL