Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Radiology ; 308(3): e230367, 2023 09.
Article in English | MEDLINE | ID: mdl-37750771

ABSTRACT

Background Background parenchymal enhancement (BPE) at breast MRI has been associated with increased breast cancer risk in several independent studies. However, variability of subjective BPE assessments have precluded its use in clinical practice. Purpose To examine the association between fully objective measures of BPE at MRI and odds of breast cancer. Materials and Methods This prospective case-control study included patients who underwent a bilateral breast MRI examination and were receiving care at one of three centers in the United States from November 2010 to July 2017. Breast volume, fibroglandular tissue (FGT) volume, and BPE were quantified using fully automated software. Fat volume was defined as breast volume minus FGT volume. BPE extent was defined as the proportion of FGT voxels with enhancement of 20% or more. Spearman rank correlation between quantitative BPE extent and Breast Imaging Reporting and Data System (BI-RADS) BPE categories assigned by an experienced board-certified breast radiologist was estimated. With use of multivariable logistic regression, breast cancer case-control status was regressed on tertiles (low, moderate, and high) of BPE, FGT volume, and fat volume, with adjustment for covariates. Results In total, 536 case participants with breast cancer (median age, 48 years [IQR, 43-55 years]) and 940 cancer-free controls (median age, 46 years [IQR, 38-55 years]) were included. BPE extent was positively associated with BI-RADS BPE (rs = 0.54; P < .001). Compared with low BPE extent (range, 2.9%-34.2%), high BPE extent (range, 50.7%-97.3%) was associated with increased odds of breast cancer (odds ratio [OR], 1.74 [95% CI: 1.23, 2.46]; P for trend = .002) in a multivariable model also including FGT volume (OR, 1.39 [95% CI: 0.97, 1.98]) and fat volume (OR, 1.46 [95% CI: 1.04, 2.06]). The association of high BPE extent with increased odds of breast cancer was similar for premenopausal and postmenopausal women (ORs, 1.75 and 1.83, respectively; interaction P = .73). Conclusion Objectively measured BPE at breast MRI is associated with increased breast cancer odds for both premenopausal and postmenopausal women. Clinical trial registration no. NCT02301767 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bokacheva in this issue.


Subject(s)
Breast Neoplasms , Humans , Female , Middle Aged , Breast Neoplasms/diagnostic imaging , Case-Control Studies , Magnetic Resonance Imaging , Breast/diagnostic imaging , Certification
2.
NMR Biomed ; 35(5): e4665, 2022 05.
Article in English | MEDLINE | ID: mdl-34962326

ABSTRACT

Magnetic resonance imaging (MRI) is playing an important role in the classification of breast tumors. MRI can be used to obtain multiparametric (mp) information, such as structural, hemodynamic, and physiological information. Quantitative analysis of mp-MRI data has shown potential in improving the accuracy of breast tumor classification. In general, a large set of quantitative and texture features can be generated depending upon the type of methodology used. A suitable combination of selected quantitative and texture features can further improve the accuracy of tumor classification. Machine learning (ML) classifiers based upon features derived from MRI data have shown potential in tumor classification. There is a need for further research studies on selecting an appropriate combination of features and evaluating the performance of different ML classifiers for accurate classification of breast tumors. The objective of the current study was to develop and optimize an ML framework based upon mp-MRI features for the characterization of breast tumors (malignant vs. benign and low- vs. high-grade). This study included the breast mp-MRI data of 60 female patients with histopathology results. A total of 128 features were extracted from the mp-MRI tumor data followed by features selection. Five ML classifiers were evaluated for tumor classification using 10-fold crossvalidation with 10 repetitions. The support vector machine (SVM) classifier based on optimum features selected using a wrapper method with an adaptive boosting (AdaBoost) technique provided the highest sensitivity (0.96 ± 0.03), specificity (0.92 ± 0.09), and accuracy (94% ± 2.91%) in the classification of malignant versus benign tumors. This method also provided the highest sensitivity (0.94 ± 0.07), specificity (0.80 ± 0.05), and accuracy (90% ± 5.48%) in the classification of low- versus high-grade tumors. These findings suggest that the SVM classifier outperformed other ML methods in the binary classification of breast tumors.


Subject(s)
Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Breast , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Retrospective Studies , Support Vector Machine
3.
Transl Oncol ; 20: 101411, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35395604

ABSTRACT

PURPOSE: Image registration plays a vital role in spatially aligning multiple MRI scans for better longitudinal assessment of tumor morphological features. The objective was to evaluate the effect of registration accuracy of six established deformable registration methods(ANTs, DRAMMS, ART, NiftyReg, SSD-FFD, and NMI-FFD) on the predictive value of extracted radiomic features when modeling recurrence-free-survival(RFS) for women after neoadjuvant chemotherapy(NAC) for locally advanced breast cancer. METHODS: 130 women had DCE-MRI scans available from the first two visits in the ISPY1/ACRIN-6657 cohort. We calculated the transformation field from each of the different deformable registration methods, and used it to compute voxel-wise parametric-response-maps(PRM) for established four kinetic features.104-radiomic features were computed from each PRM map to characterize intra-tumor heterogeneity. We evaluated performance for RFS using Cox-regression, C-statistic, and Kaplan-Meier(KM) plots. RESULTS: A baseline model(F1:Age, Race, and Hormone-receptor-status) had a 0.54 C-statistic, and model F2(baseline + functional-tumor-volume at early treatment visit(FTV2)) had 0.63. The F2+ANTs had the highest C-statistic(0.72) with the smallest landmark differences(5.40±4.40mm) as compared to other models. The KM curve for model F2 gave p=0.004 for separation between women above and below the median hazard compared to the model F1(p=0.31). A models augmented with radiomic features, also achieved significant KM curve separation(p<0.001) except the F2+ART model. CONCLUSION: Incorporating image registration in quantifying changes in tumor heterogeneity during NAC can improve prediction of RFS. Radiomic features of PRM maps derived from warping the DCE-MRI kinetic maps using ANTs registration method further improved the early prediction of RFS as compared to other methods.

4.
PLoS One ; 13(1): e0190348, 2018.
Article in English | MEDLINE | ID: mdl-29320532

ABSTRACT

The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W) images, with and without fat saturation(WWFS), and dynamic-contrast-enhanced(DCE)-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images) using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG), fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard) were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3-7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Algorithms , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL