Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nanomedicine ; 13(8): 2555-2564, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28754467

ABSTRACT

A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D)nDEVDGC)3-trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K)nDEVDGC)3-trimaleimides and a 1:1 mixture of cholesterol-(K/D)nDEVDGC)3-trimaleimides form stable nanosponges, whereas cholesterol-(D)nDEVDGC)3-trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells.


Subject(s)
Cholesterol/analogs & derivatives , Drug Carriers/chemistry , Nanostructures/chemistry , Peptides/chemistry , Animals , Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Humans , Mice , Molecular Dynamics Simulation , Neoplasms/drug therapy , RAW 264.7 Cells
2.
Langmuir ; 28(38): 13705-11, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22934571

ABSTRACT

This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 µm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.


Subject(s)
Gallium/chemistry , Nanoparticles/chemistry , Electrodes , Particle Size , Porosity , Surface Properties
3.
Photochem Photobiol Sci ; 11(7): 1251-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22565929

ABSTRACT

We have transfected murine neural stem cells (NSCs) and rat umbilical cord matrix-derived stem cells (RUCMSCs) with a plasmid expressing gaussia luciferase (gLuc). These cells are engineered to secrete the luciferase. We have used gLuc containing supernatant from culturing the NSCs to perform in vitro photodynamic therapy of murine melanoma cells (B16F10), and RUCMSCs to perform in vivo PDT of lung melanomas in C57BL/6 mice. The treatment system was comprised of aminolevulic acid as a prodrug for the synthesis of the photosensitizer protoporphyrin IX, gaussia luciferase, and its' substrate coelenterazine. A significant reduction of the number of live melanoma cells in vitro and a borderline significant retardation of tumour growth in vivo was observed after coelenterazine-mediated PDT.


Subject(s)
Stem Cells/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Fetal Blood/cytology , Imidazoles/chemistry , Imidazoles/pharmacology , Luciferases/genetics , Luciferases/metabolism , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Oxidation-Reduction , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/toxicity , Plasmids/metabolism , Protoporphyrins/biosynthesis , Protoporphyrins/therapeutic use , Protoporphyrins/toxicity , Pyrazines/chemistry , Pyrazines/pharmacology , Rats , Stem Cell Transplantation , Stem Cells/cytology , Transfection
4.
Nanotechnology ; 23(45): 455105, 2012 Nov 16.
Article in English | MEDLINE | ID: mdl-23085541

ABSTRACT

Maneuverable, high aspect ratio poly(3,4-ethylene dioxythiophene) (PEDOT) fibers are fabricated for use as cellular force probes that can interface with individual pseudopod adhesive contact sites without forming unintentional secondary contacts to the cell. The straight fibers have lengths between 5 and 40 µm and spring constants in the 0.07-23.2 nN µm(-1) range. The spring constants of these fibers were measured directly using an atomic force microscope (AFM). These AFM measurements corroborate determinations based on the transverse vibrational resonance frequencies of the fibers, which is a more convenient method. These fibers are employed to characterize the time dependent forces exerted at adhesive contacts between apical pseudopods of highly migratory D. discoideum cells and the PEDOT fibers, finding an average terminal force of 3.1 ± 2.7 nN and lifetime of 23.4 ± 18.5 s to be associated with these contacts.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Dictyostelium/ultrastructure , Microscopy, Atomic Force/instrumentation , Polymers/chemistry , Algorithms
5.
Nanotechnology ; 20(23): 235307, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19448294

ABSTRACT

This work delineates the mechanism by which directional nanowire growth occurs in the directed electrochemical nanowire assembly (DENA) technique for growing nanowires on micro-electrode arrays. Indium, polythiophene, and polypyrrole nanowires are the subjects of this study. This technique allows the user to specify the growth path without the use of a mechanical template. Nanowire growth from a user-selected electrode to within +/- 3 microm of the straight line path to a second electrode lying within a approximately 140 degrees angular range and a approximately 100 microm radius of the selected electrode is demonstrated. Theory for one-dimensional electrochemical diffusion in the inter-electrode region reveals that screening of the applied voltage is incomplete, allowing a long range voltage component to extend from the biased to the grounded electrode. Numerical analysis of two-dimensional multi-electrode arrays shows that a linear ridge of electric field maxima bridges the gap between selected electrodes but decays in all other directions. The presence of this anisotropic, long range voltage defines the wire growth path and suppresses the inherent tip splitting tendency of amorphous polymeric materials. This technology allows polythiophene and polypyrrole to be grown as wires rather than fractal aggregates or films, establishing DENA as an on-chip approach to both crystalline metallic and amorphous polymeric nanowire growth.

6.
ACS Appl Bio Mater ; 2(1): 49-60, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-35016330

ABSTRACT

Peptide nanosponges of low polydispersity are spontaneously formed from trigonal supramolecular building blocks in aqueous buffers, which feature cationic and/or anionic oligopeptides (n = 5-20) and a hydrophobic unit. In contrast to classical liposomes/vesicles, nanosponges feature interwoven hydrophilic and hydrophobic nanodomains and are readily taken up by mammalian cells. Perillyl alcohol is known to be a simple, but effective small molecule drug against glioma multiforme. However, its efficacy is limited by a poor bioavailability. In order to make perillyl alcohol bioavailable, two nanosponges consisting of 10 aspartates, to which perillyl alcohol is attached by means of an ester bond, and 20 lysines or arginines (type (D-POH)10K20 and (D-POH)10R20) were synthesized, purified, and characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM). These nanosponges were then tested in cell cultures of murine glioma cells (GL26) and murine neural progenitor cells (NPC) because the latter was previously utilized in cell-based cancer therapy. The two nanosponges exhibited significantly different biophysical properties (size distribution and ζ potentials). Consequently, different efficacies in killing GL26 and NPC were observed in serum-containing culture media. The results from these experiments confirmed that the type (D-POH)10K20 nanosponge is a promising candidate for the (cell-mediated) cytotherapy of glioblastoma.

7.
RSC Adv ; 8(29): 16052-16060, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-35542227

ABSTRACT

The structure of novel binary nanosponges consisting of (cholesterol-(K/D) n DEVDGC)3-trimaleimide units possessing a trigonal maleimide linker, to which either lysine (K)20 or aspartic acid (D)20 are tethered, has been elucidated by means of TEM. A high degree of agreement between these findings and structure predictions through explicit solvent and then coarse-grained molecular dynamics (MD) simulations has been found. Based on the nanosponges' structure and dynamics, caspase-6 mediated release of the model drug 5(6)-carboxyfluorescein has been demonstrated. Furthermore, the binary (DK20) nanosponges have been found to be virtually non-toxic in cultures of neural progenitor cells. It is of a special importance for the future development of cell-based therapies that DK20 nanosponges were taken up efficiently by leucocytes (WBC) in peripheral blood within 3 h of exposure. The percentage of live cells among the WBC was not significantly decreased by the DK20 nanosponges. In contrast to stem cell or leucocyte cell cultures, which have to be matched to the patient, autologous cells are optimal for cell-mediated therapy. Therefore, the nanosponges hold great promise for effective cell-based tumor targeting.

8.
Appl Phys Lett ; 110(7): 073106, 2017 Feb 13.
Article in English | MEDLINE | ID: mdl-28289313

ABSTRACT

This paper describes the electrochemical growth of branchless gold nanoribbons with ∼40 nm × âˆ¼300 nm cross sections and >100 µm lengths (giving length-to-thickness aspect ratios of >103). These structures are useful for opto-electronic studies and as nanoscale electrodes. The 0.75-1.0 V voltage amplitude range is optimal for branchless ribbon growth. Reduced amplitudes induce no growth, possibly due to reversible redox chemistry of gold at reduced amplitudes, whereas elevated amplitudes, or excess electrical noise, induce significant side-branching. The inter-relatedness of voltage-amplitude, noise, and side-branching in electrochemical nanoribbon growth is demonstrated.

9.
J Pharm Sci ; 104(5): 1575-91, 2015 May.
Article in English | MEDLINE | ID: mdl-25753756

ABSTRACT

An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size-enriched into different size bins by low-speed centrifugation or a combination of gravitational sedimentation and fluorescence-activated cell sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5-10 µm in size displayed elevated cytokine release profiles compared with other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared with controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by microflow imaging, transmission electron microscopy, and scanning electron microscopy-energy dispersive X-ray spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in vitro PBMC studies to rank-order the immunogenic potential of various types of mAb particles are discussed.


Subject(s)
Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Flow Cytometry/methods , Particle Size , Humans , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Leukocytes, Mononuclear/cytology , Microspheres , Nanoparticles/analysis , Nanoparticles/chemistry
10.
Beilstein J Nanotechnol ; 5: 760-9, 2014.
Article in English | MEDLINE | ID: mdl-24991513

ABSTRACT

The quest for renewable and cleaner energy sources to meet the rapid population and economic growth is more urgent than ever before. Being the most abundant carbon source in the atmosphere of Earth, CO2 can be used as an inexpensive C1 building block in the synthesis of aromatic fuels for internal combustion engines. We designed a process capable of synthesizing benzene, toluene, xylenes and mesitylene from CO2 and H2 at modest temperatures (T = 380 to 540 °C) employing Fe/Fe3O4 nanoparticles as catalyst. The synthesis of the catalyst and the mechanism of CO2-hydrogenation will be discussed, as well as further applications of Fe/Fe3O4 nanoparticles in catalysis.

11.
Beilstein J Nanotechnol ; 3: 444-55, 2012.
Article in English | MEDLINE | ID: mdl-23016149

ABSTRACT

The targeted delivery of therapeutics to the tumor site is highly desirable in cancer treatment, because it is capable of minimizing collateral damage. Herein, we report the synthesis of a nanoplatform, which is composed of a 15 ± 1 nm diameter core/shell Fe/Fe(3)O(4) magnetic nanoparticles (MNPs) and the topoisomerase I blocker SN38 bound to the surface of the MNPs via a carboxylesterase cleavable linker. This nanoplatform demonstrated high heating ability (SAR = 522 ± 40 W/g) in an AC-magnetic field. For the purpose of targeted delivery, this nanoplatform was loaded into tumor-homing double-stable RAW264.7 cells (mouse monocyte/macrophage-like cells (Mo/Ma)), which have been engineered to express intracellular carboxylesterase (InCE) upon addition of doxycycline by a Tet-On Advanced system. The nanoplatform was taken up efficiently by these tumor-homing cells. They showed low toxicity even at high nanoplatform concentration. SN38 was released successfully by switching on the Tet-On Advanced system. We have demonstrated that this nanoplatform can be potentially used for thermochemotherapy. We will be able to achieve the following goals: (1) Specifically deliver the SN38 prodrug and magnetic nanoparticles to the cancer site as the payload of tumor-homing double-stable RAW264.7 cells; (2) Release of chemotherapeutic SN38 at the cancer site by means of the self-containing Tet-On Advanced system; (3) Provide localized magnetic hyperthermia to enhance the cancer treatment, both by killing cancer cells through magnetic heating and by activating the immune system.

SELECTION OF CITATIONS
SEARCH DETAIL