Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 601(7893): 415-421, 2022 01.
Article in English | MEDLINE | ID: mdl-34987220

ABSTRACT

Transcriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues1,2. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs3-5. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation. By analysing more than 100,000 reconstructions of cell shapes and tracks over time, we obtained behavioural descriptors of individual cells and used these high-dimensional datasets to build behavioural landscapes. These landscapes recognized leukocyte identities in the inflamed skin and trachea, and uncovered a continuum of neutrophil states inside blood vessels, including a large, sessile state that was embraced by the underlying endothelium and associated with pathogenic inflammation. Behavioural screening in 24 mouse mutants identified the kinase Fgr as a driver of this pathogenic state, and interference with Fgr protected mice from inflammatory injury. Thus, behavioural landscapes report distinct properties of dynamic environments at high cellular resolution.


Subject(s)
Inflammation , Leukocytes , Proteomics , Animals , Cell Shape , Endothelium/immunology , Inflammation/immunology , Leukocytes/immunology , Mice , Neutrophils/immunology , Proto-Oncogene Proteins/immunology , src-Family Kinases/immunology
2.
Proc Natl Acad Sci U S A ; 119(21): e2200413119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35576468

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-ß are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged <70 y and in >4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Autoimmunity , COVID-19 , Interferon Type I , SARS-CoV-2 , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Autoantibodies/blood , COVID-19/immunology , COVID-19/mortality , Female , Humans , Interferon Type I/immunology , Male , Middle Aged , Risk
3.
J Cell Physiol ; 239(6): e31257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504496

ABSTRACT

Bone diseases are increasing with aging populations and it is important to identify clues to develop innovative treatments. Vasn, which encodes vasorin (Vasn), a transmembrane protein involved in the pathophysiology of several organs, is expressed during the development in intramembranous and endochondral ossification zones. Here, we studied the impact of Vasn deletion on the osteoblast and osteoclast dialog through a cell Coculture model. In addition, we explored the bone phenotype of Vasn KO mice, either constitutive or tamoxifen-inducible, or with an osteoclast-specific deletion. First, we show that both osteoblasts and osteoclasts express Vasn. Second, we report that, in both KO mouse models but not in osteoclast-targeted KO mice, Vasn deficiency was associated with an osteopenic bone phenotype, due to an imbalance in favor of osteoclastic resorption. Finally, through the Coculture experiments, we identify a dysregulation of the Wnt/ß-catenin pathway together with an increase in RANKL release by osteoblasts, which led to an enhanced osteoclast activity. This study unravels a direct role of Vasn in bone turnover, introducing a new biomarker or potential therapeutic target for bone pathologies.


Subject(s)
Bone Remodeling , Coculture Techniques , Osteoblasts , Osteoclasts , Wnt Signaling Pathway , Animals , Mice , Bone and Bones/metabolism , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/genetics , Bone Diseases, Metabolic/pathology , Bone Remodeling/physiology , Bone Resorption/metabolism , Bone Resorption/genetics , Bone Resorption/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , RANK Ligand/metabolism , RANK Ligand/genetics
4.
Lancet ; 402(10408): 1158-1169, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37598688

ABSTRACT

BACKGROUND: Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS: We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS: The data collected from xenografts suggested early signs of antibody-mediated rejection, characterised by microvascular inflammation with immune deposits, endothelial cell activation, and positive xenoreactive crossmatches. Capillary inflammation was mainly composed of intravascular CD68+ and CD15+ innate immune cells, as well as NKp46+ cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION: Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING: OrganX and MSD Avenir.


Subject(s)
Graft Rejection , Kidney , Animals , Swine , Humans , Transplantation, Heterologous , Antibodies , Immunity , Inflammation , Ischemia
5.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460898

ABSTRACT

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Myocardial Infarction/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Vasodilation , Animals , Mice
6.
Postgrad Med J ; 100(1180): 120-126, 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-37978265

ABSTRACT

PURPOSE: To assess risk factors for arterial and venous thromboses (AVT) in patients hospitalized in general wards for COVID-19 pneumonia and requiring oxygen therapy. METHODS: Our study was based on three randomized studies conducted as part of the CORIMUNO-19 platform in France between 27 March and 26 April 2020. Adult inpatients with COVID-19 pneumonia requiring at least 3 l/min of oxygen but not ventilation were randomized to receive standard care alone or standard care plus biologics. Patients were followed up for 3 months, and adverse events were documented. Risk factor for AVT and bleeding was identified by analyzing clinical, laboratory, and treatment data at baseline among the 315 patients with complete datasets. A Fine and Gray model was used to take account of competing events. RESULTS: During the 3-month follow-up period, 39 AVT occurred in 38 (10%) of the 388 patients: 26 deep vein thromboses and/or pulmonary embolisms in 25 (6%) patients, and 14 arterial thrombotic events in 13 (3%) patients. A history of diabetes at inclusion [sHR (95% CI) = 2.65 (1.19-5.91), P = .017] and the C-reactive protein (CRP) level (sHR = 1 [1-1.01], P = .049) were significantly associated with an elevated risk of thrombosis. Obesity was not associated with a higher risk of thrombosis (sHR = 1.01 [0.4-2.57], P = .98). The CRP level and diabetes were not risk factors for hemorrhage. CONCLUSION: Among patients hospitalized in general wards for COVID-19 pneumonia during the first wave of the epidemic, diabetes (but not obesity) and a high CRP level were risk factors for AVT. The use of higher doses of anticoagulant in these high-risk patients could be considered.


Subject(s)
COVID-19 , Diabetes Mellitus , Thromboembolism , Thrombosis , Adult , Humans , COVID-19/complications , COVID-19/therapy , SARS-CoV-2 , Oxygen , Patients' Rooms , Thromboembolism/epidemiology , Thromboembolism/etiology , Hemorrhage , Risk Factors
7.
J Am Soc Nephrol ; 34(11): 1823-1842, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37678257

ABSTRACT

SIGNIFICANCE STATEMENT: Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND: Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS: This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS: Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS: Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Humans , Mice , Animals , TRPC6 Cation Channel/physiology , Podocytes/metabolism , Diabetic Nephropathies/metabolism , Calpain/metabolism , Diabetes Mellitus, Experimental/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Disease Models, Animal , Autophagy
8.
Kidney Int ; 103(6): 1018-1020, 2023 06.
Article in English | MEDLINE | ID: mdl-36948398

ABSTRACT

Polat et al. report that mice with a podocyte-specific expression of a constitutively active Rac1 form displayed similar injury and albuminuria, regardless of transient receptor potential canonical 5 activity. This article confirms the pathogenic role of deregulated Rac1 and challenges models involving the role of transient receptor potential canonical 5 in podocytes. We learned from this study and propose a roadmap for this controversial field to help new drug candidates succeed in clinical trials and safely reach patients.


Subject(s)
Podocytes , Mice , Animals , Podocytes/pathology , Albuminuria/metabolism
9.
Br J Haematol ; 203(2): 319-326, 2023 10.
Article in English | MEDLINE | ID: mdl-37583261

ABSTRACT

Sickle cell anaemia (SCA) is a monogenic disease with a highly variable clinical course. We aimed to investigate associations between microvascular function, haemolysis markers, blood viscosity and various types of SCA-related organ damage in a multicentric sub-Saharan African cohort of patients with SCA. In a cross-sectional study, we selected seven groups of adult patients with SS phenotype in Dakar and Bamako based on the following complications: leg ulcer, priapism, osteonecrosis, retinopathy, high tricuspid regurgitant jet velocity (TRV), macro-albuminuria or none. Clinical assessment, echocardiography, peripheral arterial tonometry, laboratory tests and blood viscosity measurement were performed. We explored statistical associations between the biological parameters and the six studied complications. Among 235 patients, 58 had high TRV, 46 osteonecrosis, 43 priapism, 33 leg ulcers, 31 retinopathy and 22 macroalbuminuria, whereas 36 had none of these complications. Multiple correspondence analysis revealed no cluster of complications. Lactate dehydrogenase levels were associated with high TRV, and blood viscosity was associated with retinopathy and the absence of macroalbuminuria. Despite extensive phenotyping of patients, no specific pattern of SCA-related complications was identified. New biomarkers are needed to predict SCA clinical expression to adapt patient management, especially in Africa, where healthcare resources are scarce.


Subject(s)
Anemia, Sickle Cell , Leg Ulcer , Osteonecrosis , Priapism , Retinal Diseases , Male , Adult , Humans , Hemolysis , Blood Viscosity , Cross-Sectional Studies , Microcirculation , Senegal , Leg Ulcer/etiology , Retinal Diseases/etiology
10.
Am J Pathol ; 192(5): 783-793, 2022 05.
Article in English | MEDLINE | ID: mdl-35183511

ABSTRACT

Pathologic fibrosis is a major hallmark of tissue insult in many chronic diseases. Although the amount of fibrosis is recognized as a direct indicator of the extent of disease, there is no consentaneous method for its quantification in tissue sections. This study tested FIBER-ML, a semi-automated, open-source freeware that uses a machine-learning approach to quantify fibrosis automatically after a short user-controlled learning phase. Fibrosis was quantified in sirius red-stained tissue sections from two fibrogenic animal models: acute stress-induced cardiomyopathy in rats (Takotsubo syndrome-like) and HIV-induced nephropathy in mice (chronic kidney disease). The quantitative results of FIBER-ML software version 1.0 were compared with those of ImageJ in Takotsubo syndrome, and with those of inForm in chronic kidney disease. Intra- and inter-operator and inter-software correlation and agreement were assessed. All correlations were excellent (>0.95) in both data sets. The values of discriminatory power between the pathologic and healthy groups were <10-3 for data on Takotsubo syndrome and <10-4 for data on chronic kidney disease. Intra-operator agreement, assessed by intra-class coefficient correlation, was good (>0.8), while inter-operator and inter-software agreement ranged from moderate to good (>0.7). FIBER-ML performed in a fast and user-friendly manner, with reproducible and consistent quantification of fibrosis in tissue sections. It offers an open-source alternative to currently used software, including quality control and file management.


Subject(s)
Renal Insufficiency, Chronic , Takotsubo Cardiomyopathy , Animals , Female , Fibrosis , Humans , Image Processing, Computer-Assisted/methods , Male , Mice , Rats , Software , Supervised Machine Learning
11.
Clin Sci (Lond) ; 137(17): 1409-1429, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37655751

ABSTRACT

BACKGROUND: In chronic kidney disease (CKD), cardiovascular morbi-mortality is higher than in general population. Atherosclerotic cardiovascular disease is accelerated in CKD, but specific CKD-related risk factors for atherosclerosis are unknown. METHODS: CKD patients from the NEFRONA study were used. We performed mRNA array from blood of patients free from atheroma plaque at baseline, with (n=10) and without (n=10) de novo atherosclerotic plaque development 2 years later. Selected mRNA candidates were validated in a bigger sample (n=148). Validated candidates were investigated in vivo in an experimental model of CKD-accelerated atherosclerosis, and in vitro in murine macrophages. RESULTS: mRNA array analysis showed 92 up-regulated and 67 down-regulated mRNAs in samples from CKD patients with de novo plaque development. The functional analysis pointed to a paramount role of the immune response. The validation in a bigger sample confirmed that B- and T-lymphocyte co-inhibitory molecule (BTLA) down-regulation was associated with de novo plaque presence after 2 years. However, BTLA down-regulation was not found to be associated with atherosclerotic progression in patients with plaque already present at baseline. In a model of CKD-accelerated atherosclerosis, mRNA and protein expression levels of BTLA were significantly decreased in blood samples and atheroma plaques. Plaques from animals with CKD were bigger, had more infiltration of inflammatory cells, higher expression of IL6 and IL17 and less presence of collagen than plaques from control animals. Incubation of macrophages with rat uremic serum decreased BTLA expression. CONCLUSIONS: BTLA could be a potential biomarker or therapeutic target for atherosclerosis incidence in CKD patients.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Receptors, Immunologic , Animals , Humans , Mice , Rats , Atherosclerosis/metabolism , Down-Regulation , Macrophages
12.
Circ Res ; 128(3): 363-382, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33301355

ABSTRACT

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Subject(s)
Blood-Brain Barrier/metabolism , Cerebral Arteries/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Stroke/metabolism , Lysophospholipids/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Disease Models, Animal , Endothelial Cells/pathology , Female , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/physiopathology , Ischemic Attack, Transient/prevention & control , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Ischemic Stroke/prevention & control , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Neuroprotective Agents/pharmacology , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/agonists , Sphingosine-1-Phosphate Receptors/genetics , Vascular Patency
13.
J Allergy Clin Immunol ; 149(2): 550-556.e2, 2022 02.
Article in English | MEDLINE | ID: mdl-34800432

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is characterized by impaired type I interferon activity and a state of hyperinflammation leading to acute respiratory distress syndrome. The complement system has recently emerged as a key player in triggering and maintaining the inflammatory state, but the role of this molecular cascade in severe COVID-19 is still poorly characterized. OBJECTIVE: We aimed at assessing the contribution of complement pathways at both the protein and transcriptomic levels. METHODS: To this end, we systematically assessed the RNA levels of 28 complement genes in the circulating whole blood of patients with COVID-19 and healthy controls, including genes of the alternative pathway, for which data remain scarce. RESULTS: We found differential expression of genes involved in the complement system, yet with various expression patterns: whereas patients displaying moderate disease had elevated expression of classical pathway genes, severe disease was associated with increased lectin and alternative pathway activation, which correlated with inflammation and coagulopathy markers. Additionally, properdin, a pivotal positive regulator of the alternative pathway, showed high RNA expression but was found at low protein concentrations in patients with a severe and critical disease, suggesting its deposition at the sites of complement activation. Notably, low properdin levels were significantly associated with the use of mechanical ventilation (area under the curve = 0.82; P = .002). CONCLUSION: This study sheds light on the role of the alternative pathway in severe COVID-19 and provides additional rationale for the testing of drugs inhibiting the alternative pathway of the complement system.


Subject(s)
COVID-19/immunology , Complement Activation/genetics , Complement Pathway, Alternative/genetics , Complement System Proteins/genetics , Disseminated Intravascular Coagulation/immunology , SARS-CoV-2/pathogenicity , COVID-19/genetics , COVID-19/therapy , COVID-19/virology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/therapy , Cardiovascular Diseases/virology , Case-Control Studies , Comorbidity , Complement System Proteins/immunology , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/therapy , Diabetes Mellitus/virology , Disseminated Intravascular Coagulation/genetics , Disseminated Intravascular Coagulation/therapy , Disseminated Intravascular Coagulation/virology , Female , Gene Expression Regulation , Humans , Hypertension/genetics , Hypertension/immunology , Hypertension/therapy , Hypertension/virology , Lectins/genetics , Lectins/immunology , Male , Middle Aged , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/virology , Properdin/genetics , Properdin/immunology , Respiration, Artificial , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Severity of Illness Index
14.
J Cell Mol Med ; 26(12): 3513-3526, 2022 06.
Article in English | MEDLINE | ID: mdl-35593050

ABSTRACT

Increasing the information depth of single kidney biopsies can improve diagnostic precision, personalized medicine and accelerate basic kidney research. Until now, information on mRNA abundance and morphologic analysis has been obtained from different samples, missing out on the spatial context and single-cell correlation of findings. Herein, we present scoMorphoFISH, a modular toolbox to obtain spatial single-cell single-mRNA expression data from routinely generated kidney biopsies. Deep learning was used to virtually dissect tissue sections in tissue compartments and cell types to which single-cell expression data were assigned. Furthermore, we show correlative and spatial single-cell expression quantification with super-resolved podocyte foot process morphometry. In contrast to bulk analysis methods, this approach will help to identify local transcription changes even in less frequent kidney cell types on a spatial single-cell level with single-mRNA resolution. Using this method, we demonstrate that ACE2 can be locally upregulated in podocytes upon injury. In a patient suffering from COVID-19-associated collapsing FSGS, ACE2 expression levels were correlated with intracellular SARS-CoV-2 abundance. As this method performs well with standard formalin-fixed paraffin-embedded samples and we provide pretrained deep learning networks embedded in a comprehensive image analysis workflow, this method can be applied immediately in a variety of settings.


Subject(s)
COVID-19 , Deep Learning , Angiotensin-Converting Enzyme 2 , COVID-19/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2
15.
J Cell Physiol ; 237(10): 3845-3859, 2022 10.
Article in English | MEDLINE | ID: mdl-35892191

ABSTRACT

Within the cardiovascular system, the protein vasorin (Vasn) is predominantly expressed by vascular smooth muscle cells (VSMCs) in the coronary arteries and the aorta. Vasn knockout (Vasn-/- ) mice die within 3 weeks of birth. In the present study, we investigated the role of vascular Vasn expression on vascular function. We used inducible Vasn knockout mice (VasnCRE-ERT KO and VasnSMMHC-CRE-ERT2 KO , in which respectively all cells or SMCs only are targeted) to analyze the consequences of total or selective Vasn loss on vascular function. Furthermore, in vivo effects were investigated in vitro using human VSMCs. The death of VasnCRE-ERT KO mice 21 days after tamoxifen injection was concomitant with decreases in blood pressure, angiotensin II levels, and vessel contractibility to phenylephrine. The VasnSMMHC-CRE-ERT2 KO mice displayed concomitant changes in vessel contractibility in response to phenylephrine and angiotensin II levels. In vitro, VASN deficiency was associated with a shift toward the SMC contractile phenotype, an increase in basal intracellular Ca2+ levels, and a decrease in the SMCs' ability to generate a calcium signal in response to carbachol or phenylephrine. Additionally, impaired endothelium-dependent relaxation (due to changes in nitric oxide signaling) was observed in all Vasn knockout mice models. Our present findings highlight the role played by Vasn SMC expression in the maintenance of vascular functions. The mechanistic experiments suggested that these effects are mediated by SMC phenotype switching and changes in intracellular calcium homeostasis, angiotensin II levels, and NO signaling.


Subject(s)
Angiotensin II , Apoptosis Regulatory Proteins/metabolism , Membrane Proteins/metabolism , Muscle, Smooth, Vascular , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Calcium/metabolism , Carbachol , Humans , Mice , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nitric Oxide/metabolism , Phenylephrine/metabolism , Tamoxifen
16.
Kidney Int ; 101(6): 1110-1112, 2022 06.
Article in English | MEDLINE | ID: mdl-35597590

ABSTRACT

Calcimimetics allosterically increase the calcium ion sensitivity of the calcium-sensing receptor (CaSR). Using a CaSR knockdown in podocytes and a podocyte-specific CaSR knockout in mice, Mühlig et al. uncovered a stabilizing role for actin cytoskeleton and cell adhesion. Short-term alleviation of albuminuria and proteinuria was observed in 4 children treated with cinacalcet. Here we discuss the potential mechanisms whereby CaSR displays a favorable effect in podocytes and the context in which calcimimetics may alleviate nephrotic syndrome.


Subject(s)
Nephrotic Syndrome , Podocytes , Animals , Cinacalcet/pharmacology , Cinacalcet/therapeutic use , Mice , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/metabolism , Podocytes/metabolism , Proteinuria/drug therapy , Proteinuria/metabolism , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism
17.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35115337

ABSTRACT

BACKGROUND: Our objective was to determine whether anti-interleukin (IL)-6 receptors improve outcomes of critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia. We report on two cohort-embedded, investigator-initiated, multicentre, open-label, Bayesian randomised controlled clinical trials. METHODS: Patients were randomly assigned to receive either usual care (UC) or UC+tocilizumab (TCZ) 8 mg·kg-1 (TOCI-2 trial) or UC or UC+sarilumab (SARI) 200 mg (SARI-2 trial), both intravenously on day 1 and, if clinically indicated, on day 3. RESULTS: Between 31 March and 20 April 2020, 97 patients were randomised in the TOCI-2 trial, to receive UC (n=46) or UC+TCZ (n=51). At day 14, numbers of patients who did not need noninvasive ventilation (NIV) or mechanical ventilation (MV) and were alive with TCZ or UC were similar (47% versus 42%; median posterior hazard ratio (HR) 1.19, 90% credible interval (CrI) 0.71-2.04), with a posterior probability of HR >1 of 71.4%. Between 27 March and 4 April 2020, 91 patients were randomised in the SARI-2 trial, to receive UC (n=41) or UC+SARI (n=50). At day 14, numbers of patients who did not need NIV or MV and were alive with SARI or UC were similar (38% versus 33%; median posterior HR 1.05, 90% CrI 0.55-2.07), with a posterior probability of HR >1 of 54.9%. Overall, the risk of death up to day 90 was: UC+TCZ 24% versus UC 30% (HR 0.67, 95% CI 0.30-1.49) and UC+SARI 29% versus UC 39% (HR 0.74, 95% CI 0.35-1.58). Both TCZ and SARI increased serious infectious events. CONCLUSION: In critically ill patients with COVID-19, anti-IL-6 receptors did not significantly increase the number of patients alive without any NIV or MV by day 14.


Subject(s)
COVID-19 , Adult , Bayes Theorem , Critical Illness , Humans , Randomized Controlled Trials as Topic , Receptors, Interleukin-6 , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
18.
J Autoimmun ; 129: 102829, 2022 05.
Article in English | MEDLINE | ID: mdl-35468361

ABSTRACT

Systemic lupus erythematosus (SLE) is a common autoimmune disorder with a complex and poorly understood immuno-pathogenesis. Lupus nephritis (LN) is a frequent and difficult to treat complication, which causes high morbidity and mortality. The multifunctional cytokine amphiregulin (AREG) has been implicated in SLE pathogenesis, but its function in LN currently remains unknown. We thus studied the model of pristane-induced LN and found increasing renal and systemic AREG expression during the course of disease. Importantly, renal injury was significantly aggravated in the absence of AREG, revealing a net anti-inflammatory role. Analyses of immune responses showed dual effects. On the one hand, AREG enhanced activation of pro-inflammatory myeloid cells, which however did not play a major role for the course of LN. More importantly, on the other hand, AREG strongly suppressed pathogenic cytokine production by T helper effector cells. This effect was more general in nature and could be reproduced in response to antigen immunization. Since AREG has been postulated to downregulate T cell responses via enhancing Treg suppressive capacity, we followed up on this aspect. Interestingly, however, in vitro studies revealed potential direct and Treg independent effects of AREG on T helper effector cells. In favor of this notion, we found significantly enhanced T cell responses and consecutive aggravation of LN, only if epidermal growth factor receptor (EGFR) signaling was abrogated in total T cells, but not if the EGFR was absent on Tregs alone. Finally, we also found enhanced AREG expression in plasma and renal biopsies of patients with LN, supporting the relevance of our findings for human disease. In summary, our data identify AREG as an anti-inflammatory mediator of LN via broad downregulation of pathogenic T cell immunity. These findings further highlight the AREG/EGFR axis as a potential therapeutic target.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Amphiregulin/genetics , Amphiregulin/metabolism , Amphiregulin/therapeutic use , Cytokines/metabolism , Down-Regulation , ErbB Receptors/metabolism , ErbB Receptors/therapeutic use , Humans , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
19.
J Am Soc Nephrol ; 32(11): 2795-2813, 2021 11.
Article in English | MEDLINE | ID: mdl-34479966

ABSTRACT

BACKGROUND: Podocyte depletion precedes progressive glomerular damage in several kidney diseases. However, the current standard of visual detection and quantification of podocyte nuclei from brightfield microscopy images is laborious and imprecise. METHODS: We have developed PodoSighter, an online cloud-based tool, to automatically identify and quantify podocyte nuclei from giga-pixel brightfield whole-slide images (WSIs) using deep learning. Ground-truth to train the tool used immunohistochemically or immunofluorescence-labeled images from a multi-institutional cohort of 122 histologic sections from mouse, rat, and human kidneys. To demonstrate the generalizability of our tool in investigating podocyte loss in clinically relevant samples, we tested it in rodent models of glomerular diseases, including diabetic kidney disease, crescentic GN, and dose-dependent direct podocyte toxicity and depletion, and in human biopsies from steroid-resistant nephrotic syndrome and from human autopsy tissues. RESULTS: The optimal model yielded high sensitivity/specificity of 0.80/0.80, 0.81/0.86, and 0.80/0.91, in mouse, rat, and human images, respectively, from periodic acid-Schiff-stained WSIs. Furthermore, the podocyte nuclear morphometrics extracted using PodoSighter were informative in identifying diseased glomeruli. We have made PodoSighter freely available to the general public as turnkey plugins in a cloud-based web application for end users. CONCLUSIONS: Our study demonstrates an automated computational approach to detect and quantify podocyte nuclei in standard histologically stained WSIs, facilitating podocyte research, and enabling possible future clinical applications.


Subject(s)
Cloud Computing , Image Processing, Computer-Assisted/methods , Kidney Diseases/pathology , Kidney Glomerulus/cytology , Podocytes/ultrastructure , Animals , Automation , Cell Count , Cell Nucleus/ultrastructure , Datasets as Topic , Deep Learning , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/pathology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Microscopy , Periodic Acid-Schiff Reaction , Rats , Species Specificity
20.
Int J Mol Sci ; 24(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613933

ABSTRACT

Progressive glomerulonephritis (GN) is characterized by an excessive accumulation of extracellular (ECM) proteins, mainly type IV collagen (COLIV), in the glomerulus leading to glomerulosclerosis. The current therapeutic approach to GN is suboptimal. Epigenetic drugs could be novel therapeutic options for human disease. Among these drugs, bromodomain and extra-terminal domain (BET) inhibitors (iBETs) have shown beneficial effects in experimental kidney disease and fibrotic disorders. Sex-determining region Y-box 9 (SOX9) is a transcription factor involved in regulating proliferation, migration, and regeneration, but its role in kidney fibrosis is still unclear. We investigated whether iBETs could regulate ECM accumulation in experimental GN and evaluated the role of SOX9 in this process. For this purpose, we tested the iBET JQ1 in mice with anti-glomerular basement membrane nephritis induced by nephrotoxic serum (NTS). In NTS-injected mice, JQ1 treatment reduced glomerular ECM deposition, mainly by inhibiting glomerular COLIV accumulation and Col4a3 gene overexpression. Moreover, chromatin immunoprecipitation assays demonstrated that JQ1 inhibited the recruitment and binding of BRD4 to the Col4a3 promoter and reduced its transcription. Active SOX9 was found in the nuclei of glomerular cells of NTS-injured kidneys, mainly in COLIV-stained regions. JQ1 treatment blocked SOX9 nuclear translocation in injured kidneys. Moreover, in vitro JQ1 blocked TGF-ß1-induced SOX9 activation and ECM production in cultured mesangial cells. Additionally, SOX9 gene silencing inhibited ECM production, including COLIV production. Our results demonstrated that JQ1 inhibited SOX9/COLIV, to reduce experimental glomerulosclerosis, supporting further research of iBET as a potential therapeutic option in progressive glomerulosclerosis.


Subject(s)
Glomerulonephritis , Kidney Diseases , Animals , Mice , Cell Cycle Proteins/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Gene Expression Regulation , Nuclear Proteins/genetics , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL