Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 296: 100100, 2021.
Article in English | MEDLINE | ID: mdl-33208460

ABSTRACT

Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.


Subject(s)
Cholesterol/metabolism , Ferroptosis , Lymphoma/metabolism , Animals , Cholesterol/genetics , Humans , Jurkat Cells , Lymphoma/genetics , Lymphoma/pathology , Mice , Mice, SCID , Neoplasm Proteins/metabolism , Oxidation-Reduction , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , U937 Cells
2.
EMBO Rep ; 19(3)2018 03.
Article in English | MEDLINE | ID: mdl-29440125

ABSTRACT

Trinucleotide repeat (TNR) expansions in the genome cause a number of degenerative diseases. A prominent TNR expansion involves the triplet CAG in the huntingtin (HTT) gene responsible for Huntington's disease (HD). Pathology is caused by protein and RNA generated from the TNR regions including small siRNA-sized repeat fragments. An inverse correlation between the length of the repeats in HTT and cancer incidence has been reported for HD patients. We now show that siRNAs based on the CAG TNR are toxic to cancer cells by targeting genes that contain long reverse complementary TNRs in their open reading frames. Of the 60 siRNAs based on the different TNRs, the six members in the CAG/CUG family of related TNRs are the most toxic to both human and mouse cancer cells. siCAG/CUG TNR-based siRNAs induce cell death in vitro in all tested cancer cell lines and slow down tumor growth in a preclinical mouse model of ovarian cancer with no signs of toxicity to the mice. We propose to explore TNR-based siRNAs as a novel form of anticancer reagents.


Subject(s)
Huntingtin Protein/genetics , Neoplasms/genetics , RNA, Small Interfering/pharmacology , Trinucleotide Repeats/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Humans , Huntingtin Protein/antagonists & inhibitors , Huntington Disease/genetics , Huntington Disease/pathology , Mice , Neoplasms/pathology , Neoplasms/therapy , Open Reading Frames , RNA, Small Interfering/genetics , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/drug effects
3.
J Am Chem Soc ; 141(25): 9753-9757, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31177775

ABSTRACT

Synthetic high-density lipoprotein (HDL) mimics have emerged as promising therapeutic agents. However, approaches to date have been unable to reproduce key features of spherical HDLs, which are the most abundant human HDL species. Here, we report the synthesis and characterization of spherical HDL mimics using lipid-conjugated organic core scaffolds. The core design motif constrains and orients phospholipid geometry to facilitate the assembly of soft-core nanoparticles that are approximately 10 nm in diameter and resemble human HDLs in their size, shape, surface chemistry, composition, and protein secondary structure. These particles execute salient HDL functions, including efflux of cholesterol from macrophages, cholesterol delivery to hepatocytes, support lecithin:cholesterol acyltransferase activity, and suppress inflammation. These results represent a significant step toward a genuine functional mimic of human HDLs.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Biomimetic Materials/chemistry , Drug Carriers/chemistry , Metal Nanoparticles/chemistry , Phosphatidylethanolamines/chemistry , Biomimetic Materials/chemical synthesis , Cholesterol/metabolism , DNA/chemistry , Drug Carriers/chemical synthesis , Gold/chemistry , Hep G2 Cells , Humans , Inflammation/drug therapy , Lipoproteins, HDL/chemistry , Liposomes/chemistry , Monocytes/metabolism , NF-kappa B p50 Subunit/metabolism
4.
Proc Natl Acad Sci U S A ; 113(38): 10655-60, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27601638

ABSTRACT

We report the identification of a molecular signature using the Scano-miR profiling platform based on the differential expression of circulating microRNAs (miRNA, miR) in serum samples specific to patients with very high-risk (VHR) prostate cancer (PCa). Five miRNA PCa biomarkers (miR-200c, miR-605, miR-135a*, miR-433, and miR-106a) were identified as useful for differentiating indolent and aggressive forms of PCa. All patients with VHR PCa in the study had elevated serum levels of miR-200c. Circulating miR-433, which was differentially expressed in patients with VHR versus low-risk (LR) forms of PCa, was not detectable by quantitative real-time PCR in samples from healthy volunteers. In blind studies, the five miRNA PCa biomarkers were able to differentiate patients with VHR PCas from those with LR forms as well as healthy individuals with at least 89% accuracy. Biological pathway analysis showed the predictive capability of these miRNA biomarkers for the diagnosis and prognosis of VHR aggressive PCa.


Subject(s)
Biomarkers, Tumor/blood , Circulating MicroRNA/blood , Prostatic Neoplasms/blood , Aged , Circulating MicroRNA/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Staging , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Risk Factors , Transcriptome
5.
J Proteome Res ; 17(6): 2156-2164, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29649363

ABSTRACT

Top-down proteomics (TDP) allows precise determination/characterization of the different proteoforms derived from the expression of a single gene. In this study, we targeted apolipoprotein A-I (ApoA-I), a mediator of high-density-lipoprotein cholesterol efflux (HDL-E), which is inversely associated with coronary heart disease risk. Absolute ApoA-I concentration and allelic variation only partially explain interindividual HDL-E variation. Therefore, we hypothesize that differences in HDL-E are associated with the abundances of different ApoA-I proteoforms. Here, we present a targeted TDP methodology to characterize ApoA-I proteoforms in serum samples and compare their abundances between individuals. We characterized 18 ApoA-I proteoforms using selected-ion monitoring coupled to electron-transfer dissociation mass spectrometry. We then compared the abundances of these proteoforms between two groups of four participants, representing the individuals with highest and lowest HDL-E values within the Chicago Healthy Aging Study ( n = 420). Six proteoforms showed significantly ( p < 0.0005) higher intensity in high HDL-E individuals: canonical ApoA-I [fold difference (fd) = 1.17], carboxymethylated ApoA-I (fd = 1.24) and, with highest difference, four fatty acylated forms: palmitoylated (fd = 2.16), oleoylated (fd = 2.08), arachidonoylated (fd = 2.31) and one bearing two modifications: palmitoylation and truncation (fd = 2.13). These results demonstrate translational potential for targeted TDP in revealing, with high sensitivity, associations between interindividual proteoform variation and physiological differences underlying disease risk.


Subject(s)
Apolipoprotein A-I/blood , Lipoproteins, HDL/metabolism , Proteomics/methods , Aged , Biological Transport , Cholesterol/metabolism , Female , Humans , Male , Mass Spectrometry/methods , Precision Medicine , Protein Processing, Post-Translational , Specimen Handling
6.
J Lipid Res ; 58(3): 600-606, 2017 03.
Article in English | MEDLINE | ID: mdl-28049656

ABSTRACT

HDL efflux capacity and HDL particle size are associated with atherosclerotic CVD (ASCVD) events in middle-aged individuals; however, it is unclear whether these associations are present in older adults. We sampled 402 Chicago Healthy Aging Study participants who underwent a dedicated carotid MRI assessment for lipid-rich necrotic core (LRNC) plaque. We measured HDL particle size, HDL particle number, and LDL particle number with NMR spectroscopy, as well as HDL efflux capacity. We quantified the associations between HDL particle size and HDL efflux using adjusted linear regression models. We quantified associations between the presence of LRNC and HDL and LDL particle number, HDL particle size, and HDL efflux capacity using adjusted logistic regression models. HDL efflux capacity was directly associated with large (ß = 0.037, P < 0.001) and medium (ß = 0.0065, P = 0.002) HDL particle concentration and inversely associated with small (ß = -0.0049, P = 0.018) HDL particle concentration in multivariable adjusted models. HDL efflux capacity and HDL particle number were inversely associated with prevalent LRNC plaque in unadjusted models (odds ratio: 0.5; 95% confidence interval: 0.26, 0.96), but not after multivariable adjustment. HDL particle size was not associated with prevalent LRNC. HDL particle size was significantly associated with HDL efflux capacity, suggesting that differences in HDL efflux capacity may be due to structural differences in HDL particles. Future research is needed to determine whether HDL efflux is a marker of ASCVD risk in older populations.


Subject(s)
Aging/blood , Carotid Artery Diseases/blood , Cholesterol, HDL/blood , Lipoproteins, HDL/blood , Adult , Aged , Aged, 80 and over , Aging/pathology , Biomarkers/blood , Carotid Artery Diseases/pathology , Chicago , Cholesterol, LDL/blood , Female , Humans , Magnetic Resonance Spectroscopy , Male , Middle Aged , Particle Size , Risk Factors
7.
Mol Pharm ; 14(11): 4042-4051, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28933554

ABSTRACT

Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/metabolism , Nanoparticles/chemistry , Receptors, Antigen, B-Cell/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cholesterol/metabolism , Humans , Lipoproteins, HDL/metabolism , Receptors, Lipoprotein/metabolism , Scavenger Receptors, Class B/metabolism , Signal Transduction/physiology
8.
Proc Natl Acad Sci U S A ; 111(48): 17104-9, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404304

ABSTRACT

Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood­so-called circulating tumor cells (CTCs)­may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy.


Subject(s)
Carbocyanines/chemistry , DNA, Antisense/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Neoplastic Cells, Circulating/chemistry , Base Sequence , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cadherins/genetics , Cadherins/metabolism , Carbocyanines/metabolism , Cell Line, Tumor , DNA, Antisense/genetics , DNA, Antisense/metabolism , Female , Fibronectins/genetics , Fibronectins/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Nanotechnology/methods , Neoplastic Cells, Circulating/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transplantation, Heterologous , Vimentin/genetics , Vimentin/metabolism , Red Fluorescent Protein
9.
Adv Funct Mater ; 26(43): 7824-7835, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-28717350

ABSTRACT

Efficient systemic administration of therapeutic short interfering RNA (siRNA) is challenging. High-density lipoproteins (HDL) are natural in vivo RNA delivery vehicles. Specifically, native HDLs: 1) Load single-stranded RNA; 2) Are anionic, which requires charge reconciliation between the RNA and HDL, and 3) Actively target scavenger receptor type B-1 (SR-B1) to deliver RNA. Emphasizing these particular parameters, we employed templated lipoprotein particles (TLP), mimics of spherical HDLs, and self-assembled them with single-stranded complements of, presumably, any highly unmodified siRNA duplex pair after formulation with a cationic lipid. Resulting siRNA templated lipoprotein particles (siRNA-TLP) are anionic and tunable with regard to RNA assembly and function. Data demonstrate that the siRNA-TLPs actively target SR-B1 to potently reduce androgen receptor (AR) and enhancer of zeste homolog 2 (EZH2) proteins in multiple cancer cell lines. Systemic administration of siRNA-TLPs demonstrated no off-target toxicity and significantly reduced the growth of prostate cancer xenografts. Thus, native HDLs inspired the synthesis of a hybrid siRNA delivery vehicle that can modularly load single-stranded RNA complements after charge reconciliation with a cationic lipid, and that function due to active targeting of SR-B1.

10.
Proc Natl Acad Sci U S A ; 110(7): 2511-6, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23345442

ABSTRACT

New therapies that challenge existing paradigms are needed for the treatment of cancer. We report a nanoparticle-enabled therapeutic approach to B-cell lymphoma using synthetic high density lipoprotein nanoparticles (HDL-NPs). HDL-NPs are synthesized using a gold nanoparticle template to control conjugate size and ensure a spherical shape. Like natural HDLs, biomimetic HDL-NPs target scavenger receptor type B-1, a high-affinity HDL receptor expressed by lymphoma cells. Functionally, compared with natural HDL, the gold NP template enables differential manipulation of cellular cholesterol flux in lymphoma cells, promoting cellular cholesterol efflux and limiting cholesterol delivery. This combination of scavenger receptor type B-1 binding and relative cholesterol starvation selectively induces apoptosis. HDL-NP treatment of mice bearing B-cell lymphoma xenografts selectively inhibits B-cell lymphoma growth. As such, HDL-NPs are biofunctional therapeutic agents, whose mechanism of action is enabled by the presence of a synthetic nanotemplate. HDL-NPs are active in B-cell lymphomas and potentially, other malignancies or diseases of pathologic cholesterol accumulation.


Subject(s)
Biomimetics/methods , Lipoproteins, HDL/therapeutic use , Lymphoma, B-Cell/drug therapy , Metal Nanoparticles/therapeutic use , Animals , Annexin A5 , Apoptosis/physiology , Blotting, Western , Fluorescein-5-isothiocyanate , Humans , Immunoblotting , Jurkat Cells , Lipoproteins, HDL/metabolism , Mass Spectrometry , Mice , Microscopy, Electron, Transmission , Scavenger Receptors, Class B/metabolism
11.
J Lipid Res ; 56(5): 972-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25652088

ABSTRACT

The ability of HDL to support macrophage cholesterol efflux is an integral part of its atheroprotective action. Augmenting this ability, especially when HDL cholesterol efflux capacity from macrophages is poor, represents a promising therapeutic strategy. One approach to enhancing macrophage cholesterol efflux is infusing blood with HDL mimics. Previously, we reported the synthesis of a functional mimic of HDL (fmHDL) that consists of a gold nanoparticle template, a phospholipid bilayer, and apo A-I. In this work, we characterize the ability of fmHDL to support the well-established pathways of cellular cholesterol efflux from model cell lines and primary macrophages. fmHDL received cell cholesterol by unmediated (aqueous) and ABCG1- and scavenger receptor class B type I (SR-BI)-mediated diffusion. Furthermore, the fmHDL holoparticle accepted cholesterol and phospholipid by the ABCA1 pathway. These results demonstrate that fmHDL supports all the cholesterol efflux pathways available to native HDL and thus, represents a promising infusible therapeutic for enhancing macrophage cholesterol efflux. fmHDL accepts cholesterol from cells by all known pathways of cholesterol efflux: unmediated, ABCG1- and SR-BI-mediated diffusion, and through ABCA1.


Subject(s)
Apolipoprotein A-I/pharmacology , Cardiotonic Agents/pharmacology , Cholesterol/metabolism , Nanoparticles/metabolism , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/metabolism , Animals , Apolipoprotein A-I/metabolism , Biological Transport , Cell Line , Coronary Artery Disease/drug therapy , Cricetinae , Drug Evaluation, Preclinical , Drug Stability , Gold/metabolism , Lipoproteins/metabolism , Macrophages/metabolism , Molecular Mimicry , Phospholipids/pharmacology , Scavenger Receptors, Class B/metabolism
12.
Langmuir ; 31(10): 3232-41, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25695627

ABSTRACT

Maintaining the intrinsic features of mesophases is critically important when employing phospholipid self-assemblies to mimic biomembranes. Inorganic solid surfaces provide platforms to support, guide, and analyze organic self-assemblies but impose upon them a tendency to form well-ordered phases not often found in biomembranes. To address this, we measured mesophase formation in a thiolate self-assembled monolayer (SAM) of diacyl phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) on Au(111), and provide thermodynamic analysis on the mixing behavior of inequivalent DPPTE acyl chains. Our work has uncovered three fundamental issues that enable mesophase formation: (1) Elimination of templating effects of the solid surface, (2) Weakening intermolecular and molecule-substrate interactions in adsorbates, and (3) Equilibrium through entropy-driven self-assembly. Thus, our work provides a more holistic understanding of phase behavior, from liquid phases to mesophases to highly crystalline phases, in organic self-assemblies on solid surfaces, which may extend their applications in nanodevices and to the wider fields of biology and medicine.


Subject(s)
Triglycerides/chemistry , Gold/chemistry , Models, Molecular , Molecular Conformation , Phase Transition , Surface Properties
13.
Cancer Treat Res ; 166: 129-50, 2015.
Article in English | MEDLINE | ID: mdl-25895867

ABSTRACT

High-density lipoproteins (HDL) are diverse natural nanoparticles that carry cholesterol and are best known for the role that they play in cardiovascular disease. However, due to their unique targeting capabilities, diverse molecular cargo, and natural functions beyond cholesterol transport, it is becoming increasingly appreciated that HDLs are critical to cancer development and progression. Accordingly, this chapter highlights ongoing research focused on the connections between HDL and cancer in order to design new drugs and targeted drug delivery vehicles. Research is focused on synthesizing biomimetic HDL-like nanoparticles (NP) that can be loaded with diverse therapeutic cargo (e.g., chemotherapies, nucleic acids, proteins) and specifically targeted to cancer cells. Beyond drug delivery, new data is emerging that HDL-like NPs may be therapeutically active in certain tumor types, for example, B cell lymphoma. Overall, HDL-like NPs are becoming increasingly appreciated as targeted, biocompatible, and efficient therapies for cancer, and may soon become indispensable agents in the cancer therapeutic armamentarium.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Lipoproteins, HDL/therapeutic use , Nanoconjugates/therapeutic use , Nanomedicine/methods , Neoplasms/drug therapy , Animals , Humans , Lipoproteins, HDL/chemistry
14.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263873

ABSTRACT

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Subject(s)
Nanoparticles , Ovarian Neoplasms , Humans , Female , Scavenger Receptors, Class B/metabolism , Cholesterol/metabolism , Transcription Factors/metabolism , Ovarian Neoplasms/drug therapy , Oxidation-Reduction
15.
Curr Opin Oncol ; 25(6): 646-51, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24097107

ABSTRACT

PURPOSE OF REVIEW: To summarize the most recent preclinical and clinical advancements in therapeutic nano-oncology. RECENT FINDINGS: First-generation nanotherapies are well tolerated in humans and evidence shows that they are efficacious, while at the same time reducing the burden of side-effects. Most of these therapies are not specifically targeted, but take advantage of enhanced passive accumulation within tumors to preferentially deliver chemotherapies that demonstrate off-target toxicities when administered as free drugs. Also, actively targeted nanotherapies are entering the clinical arena and preliminary data are encouraging. Finally, a number of exciting preclinical developments in nanotechnology provide clear evidence that nanotherapies will continue to enter the clinic and will have a significant impact in oncology. SUMMARY: A number of intriguing nanoparticle therapies are being tested in preclinical and clinical trials. Nanoparticles with increasing molecular sophistication, specific targeting properties, and unique mechanisms of action will find their way to the clinic. Certainly, nanoparticle-based therapies will be increasingly represented in drug development pipelines, and will continue to provide efficacious and well tolerated drug options for patients with cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Delivery Systems/trends , Molecular Targeted Therapy , Nanomedicine/trends , Nanoparticles/therapeutic use , Neoplasms/drug therapy , RNA, Small Interfering/therapeutic use , Animals , Clinical Trials as Topic , Drug Delivery Systems/methods , Drug Design , Humans , Male , Mice , Molecular Targeted Therapy/trends , Nanomedicine/methods
16.
Anal Chem ; 84(9): 4153-60, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22489825

ABSTRACT

We report the development of a novel Scanometric MicroRNA (Scano-miR) platform for the detection of relatively low abundance miRNAs with high specificity and reproducibility. The Scano-miR system was able to detect 1 fM concentrations of miRNA in serum with single nucleotide mismatch specificity. Indeed, it provides increased sensitivity for miRNA targets compared to molecular fluorophore-based detection systems, where 88% of the low abundance miRNA targets could not be detected under identical conditions. The application of the Scano-miR platform to high density array formats demonstrates its utility for high throughput and multiplexed miRNA profiling from various biological samples. To assess the accuracy of the Scano-miR system, we analyzed the miRNA profiles of samples from men with prostate cancer (CaP), the most common noncutaneous malignancy and the second leading cause of cancer death among American men. The platform exhibits 98.8% accuracy when detecting deregulated miRNAs involved in CaP, which demonstrates its potential utility in profiling and identifying clinical and research biomarkers.


Subject(s)
Gold/chemistry , MicroRNAs/blood , Nanoparticles/chemistry , Nucleic Acids/chemistry , Oligonucleotide Array Sequence Analysis/instrumentation , Prostatic Neoplasms/blood , Equipment Design , Gene Expression Profiling , Humans , Male , MicroRNAs/genetics , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Sensitivity and Specificity
17.
Proc Natl Acad Sci U S A ; 106(44): 18437-42, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19841273

ABSTRACT

We report the development of a previously undescribed gold nanoparticle bio-barcode assay probe for the detection of prostate specific antigen (PSA) at 330 fg/mL, automation of the assay, and the results of a clinical pilot study designed to assess the ability of the assay to detect PSA in the serum of 18 men who have undergone radical prostatectomy for prostate cancer. Due to a lack of sensitivity, available PSA immunoassays are often not capable of detecting PSA in the serum of men after radical prostatectomy. This new bio-barcode PSA assay is approximately 300 times more sensitive than commercial immunoassays. Significantly, with the barcode assay, every patient in this cohort had a measurable serum PSA level after radical prostatectomy. Patients were separated into categories based on PSA levels as a function of time. One group of patients showed low levels of PSA with no significant increase with time and did not recur. Others showed, at some point postprostatectomy, rising PSA levels. The majority recurred. Therefore, this new ultrasensitive assay points to significant possible outcomes: (i) The ability to tell patients, who have undetectable PSA levels with conventional assays, but detectable and nonrising levels with the barcode assay, that their cancer will not recur. (ii) The ability to assign recurrence earlier because of the ability to measure increasing levels of PSA before conventional tools can make such assignments. (iii) The ability to use PSA levels that are not detectable with conventional assays to follow the response of patients to adjuvant or salvage therapies.


Subject(s)
Biological Assay/methods , Metal Nanoparticles/chemistry , Prostate-Specific Antigen/blood , Prostatectomy , Calibration , Humans , Male , Molecular Probes/metabolism , Postoperative Care , Prostatic Neoplasms/surgery
18.
Nano Lett ; 11(3): 1208-14, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21319839

ABSTRACT

We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.


Subject(s)
Lipoproteins, HDL/chemistry , Molecular Mimicry , Nanoparticles , Nucleic Acids/administration & dosage , Cell Line , Humans , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence
19.
Biosens Bioelectron ; 195: 113647, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34583103

ABSTRACT

The rapid spread of COVID-19 including recent emergence of new variants with its extreme range of pathologies create an urgent need to develop a versatile sensor for a rapid, precise, and highly sensitive detection of SARS-CoV-2. Herein, we report a microcantilever-based optical detection of SARS-CoV-2 antigenic proteins in just few minutes with high specificity by employing fluidic-atomic force microscopy (f-AFM) mediated nanomechanical deflection method. The corresponding antibodies against the target antigens were first grafted on the gold-coated microcantilever surface pre-functionalized with EDC-NHS chemistry for a suitable antibody-antigen interaction. Rapid detection of SARS-CoV-2 nucleocapsid (N) and spike (S1) receptor binding domain (RBD) proteins was first demonstrated at a clinically relevant concentration down to 1 ng/mL (33 pM) by real-time monitoring of nanomechanical signal induced by antibody-antigen interaction. More importantly, we further show high specific detection of antigens with nasopharyngeal swab specimens from patients pre-determined with qRT-PCR. The results take less than 5 min (swab to signal ≤5 min) and exhibit high selectivity and analytical sensitivity (LoD: 100 copies/ ml; 0.71 ng/ml of N protein). These findings demonstrate potential for nanomechanical signal transduction towards rapid antigen detection for early screening of SARS-CoV-2 and its related mutants.


Subject(s)
Biosensing Techniques , COVID-19 , Gold , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
20.
J Am Heart Assoc ; 10(17): e019890, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34472376

ABSTRACT

Background ApoAI (apolipoproteins AI) and apoAII (apolipoprotein AII) are structural and functional proteins of high-density lipoproteins (HDL) which undergo post-translational modifications at specific residues, creating distinct proteoforms. While specific post-translational modifications have been reported to alter apolipoprotein function, the full spectrum of apoAI and apoAII proteoforms and their associations with cardiometabolic phenotype remains unknown. Herein, we comprehensively characterize apoAI and apoAII proteoforms detectable in serum and their post-translational modifications and quantify their associations with cardiometabolic health indices. Methods and Results Using top-down proteomics (mass-spectrometric analysis of intact proteins), we analyzed paired serum samples from 150 CARDIA (Coronary Artery Risk Development in Young Adults) study participants from year 20 and 25 exams. Measuring 15 apoAI and 9 apoAII proteoforms, 6 of which carried novel post-translational modifications, we quantified associations between percent proteoform abundance and key cardiometabolic indices. Canonical (unmodified) apoAI had inverse associations with HDL cholesterol and HDL-cholesterol efflux, and positive associations with obesity indices (body mass index, waist circumference), and triglycerides, whereas glycated apoAI showed positive associations with serum glucose and diabetes mellitus. Fatty-acid‒modified ApoAI proteoforms had positive associations with HDL cholesterol and efflux, and inverse associations with obesity indices and triglycerides. Truncated and dimerized proteoforms of apoAII were associated with HDL cholesterol (positively) and obesity indices (inversely). Several proteoforms had no significant associations with phenotype. Conclusions Associations between apoAI and AII and cardiometabolic indices are proteoform-specific. These results provide "proof-of-concept" that precise chemical characterization of human apolipoproteins will yield improved insights into the complex pathways through which proteins signify and mediate health and disease.


Subject(s)
Apolipoprotein A-II , Apolipoprotein A-I , Cardiovascular Diseases , Adult , Apolipoprotein A-I/blood , Apolipoprotein A-II/blood , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cholesterol, HDL/blood , Female , Humans , Male , Middle Aged , Obesity/diagnosis , Obesity/epidemiology , Protein Processing, Post-Translational , Proteomics , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL