Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Crit Care Med ; 210(6): 814-827, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38564376

ABSTRACT

Rationale: The chronic lung disease bronchopulmonary dysplasia (BPD) is the most severe complication of extreme prematurity. BPD results in impaired lung alveolar and vascular development and long-term respiratory morbidity, for which only supportive therapies exist. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) improve lung structure and function in experimental BPD. Results of clinical trials with MSCs for many disorders do not yet match the promising preclinical studies. A lack of specific criteria to define functionally distinct MSCs persists. Objectives: To determine and correlate single-cell UC-MSC transcriptomic profiles with therapeutic potential. Methods: UC-MSCs from five term donors and human neonatal dermal fibroblasts (HNDFs; control cells of mesenchymal origin) transcriptomes were investigated using single-cell RNA sequencing (scRNA-seq) analysis. The lung-protective effect of UC-MSCs with a distinct transcriptome and control HNDFs was tested in vivo in hyperoxia-induced neonatal lung injury in rats. Measurements and Main Results: UC-MSCs showed limited transcriptomic heterogeneity but were different from HNDFs. Gene Ontology enrichment analysis revealed distinct (progenitor-like and fibroblast-like) UC-MSC subpopulations. Only treatment with progenitor-like UC-MSCs improved lung function and structure and attenuated pulmonary hypertension in hyperoxia-exposed rat pups. Moreover, scRNA-seq identified major histocompatibility complex class I as a molecular marker of nontherapeutic cells and associated with decreased lung retention. Conclusions: UC-MSCs with a progenitor-like transcriptome, but not with a fibroblast-like transcriptome, provide lung protection in experimental BPD. High expression of major histocompatibility complex class I is associated with reduced therapeutic benefit. scRNA-seq may be useful to identify subsets of MSCs with superior repair capacity for clinical application.


Subject(s)
Mesenchymal Stem Cells , Sequence Analysis, RNA , Single-Cell Analysis , Umbilical Cord , Humans , Umbilical Cord/cytology , Animals , Rats , Single-Cell Analysis/methods , Infant, Newborn , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/therapy , Mesenchymal Stem Cell Transplantation/methods , Transcriptome , Disease Models, Animal
2.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L661-L671, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38349120

ABSTRACT

It is unclear what effect biological sex has on outcomes of acute lung injury (ALI). Clinical studies are confounded by their observational design. We addressed this knowledge gap with a preclinical systematic review of ALI animal studies. We searched MEDLINE and Embase for studies of intratracheal/intranasal/aerosolized lipopolysaccharide administration (the most common ALI model) that reported sex-stratified data. Screening and data extraction were conducted in duplicate. Our primary outcome was histological tissue injury and secondary outcomes included alveolar-capillary barrier alterations and inflammatory markers. We used a random-effects inverse variance meta-analysis, expressing data as standardized mean difference (SMD) with 95% confidence intervals (CIs). Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified six studies involving 132 animals across 11 independent experiments. A total of 41 outcomes were extracted, with the direction of effect suggesting greater severity in males than females in 26/41 outcomes (63%). One study reported on lung histology and found that male mice exhibited greater injury than females (SMD: 1.61, 95% CI: 0.53-2.69). Meta-analysis demonstrated significantly elevated albumin levels (SMD: 2.17, 95% CI: 0.63-3.70) and total cell counts (SMD: 0.80, 95% CI: 0.27-1.33) in bronchoalveolar lavage fluid from male mice compared with female mice. Most studies had an "unclear risk of bias." Our findings suggest sex-related differences in ALI severity. However, these conclusions are drawn from a small number of animals and studies. Further research is required to address the fundamental issue of biological sex differences in LPS-induced ALI.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Animals , Lipopolysaccharides/toxicity , Female , Male , Sex Characteristics , Mice , Sex Factors , Humans , Disease Models, Animal , Lung/pathology , Lung/metabolism
3.
BMC Biotechnol ; 24(1): 22, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664752

ABSTRACT

BACKGROUND: The advancement of AAV vectors into clinical testing has accelerated rapidly over the past two decades. While many of the AAV vectors being utilized in clinical trials are derived from natural serotypes, engineered serotypes are progressing toward clinical translation due to their enhanced tissue tropism and immune evasive properties. However, novel AAV vectors require formulation and stability testing to determine optimal storage conditions prior to their use in a clinical setting. RESULTS: Here, we evaluated the thermal stability of AAV6.2FF, a rationally engineered capsid with strong tropism for lung and muscle, in two different buffer formulations; phosphate buffered saline (PBS), or PBS supplemented with 0.001% non-ionic surfactant Pluronic F68 (PF-68). Aliquots of AAV6.2FF vector encoding the firefly luciferase reporter gene (AAV6.2FF-ffLuc) were incubated at temperatures ranging from -20°C to 55°C for varying periods of time and the impact on infectivity and particle integrity evaluated. Additionally, the impact of several rounds of freeze-thaw treatments on the infectivity of AAV6.2FF was investigated. Vector infectivity was measured by quantifying firefly luciferase expression in HEK 293 cells and AAV particle integrity was measured by qPCR quantification of encapsidated viral DNA. CONCLUSIONS: Our data demonstrate that formulating AAV6.2FF in PBS containing 0.001% PF-68 leads to increased stability and particle integrity at temperatures between -20℃ to 21℃ and protection against the destructive effects of freeze-thaw. Finally, AAV6.2FF-GFP formulated in PBS supplemented with 0.001% PF-68 displayed higher transduction efficiency in vivo in murine lung epithelial cells following intranasal administration than vector buffered in PBS alone further demonstrating the beneficial properties of PF-68.


Subject(s)
Dependovirus , Genetic Vectors , Poloxamer , Animals , Humans , HEK293 Cells , Poloxamer/pharmacology , Poloxamer/chemistry , Mice , Dependovirus/genetics , Genetic Vectors/genetics , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Temperature , Genes, Reporter
4.
Mol Ther ; 31(12): 3457-3477, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37805711

ABSTRACT

Surfactant protein B (SP-B) deficiency is a rare genetic disease that causes fatal respiratory failure within the first year of life. Currently, the only corrective treatment is lung transplantation. Here, we co-transduced the murine lung with adeno-associated virus 6.2FF (AAV6.2FF) vectors encoding a SaCas9-guide RNA nuclease or donor template to mediate insertion of promoterless reporter genes or the (murine) Sftpb gene in frame with the endogenous surfactant protein C (SP-C) gene, without disrupting SP-C expression. Intranasal administration of 3 × 1011 vg donor template and 1 × 1011 vg nuclease consistently edited approximately 6% of lung epithelial cells. Frequency of gene insertion increased in a dose-dependent manner, reaching 20%-25% editing efficiency with the highest donor template and nuclease doses tested. We next evaluated whether this promoterless gene editing platform could extend survival in the conditional SP-B knockout mouse model. Administration of 1 × 1012 vg SP-B-donor template and 5 × 1011 vg nuclease significantly extended median survival (p = 0.0034) from 5 days in the untreated off doxycycline group to 16 days in the donor AAV and nuclease group, with one gene-edited mouse living 243 days off doxycycline. This AAV6.2FF-based gene editing platform has the potential to correct SP-B deficiency, as well as other disorders of alveolar type II cells.


Subject(s)
Doxycycline , Gene Editing , Mice , Animals , Dependovirus/genetics , Genetic Vectors/genetics , RNA, Guide, CRISPR-Cas Systems , Lung/metabolism , Surface-Active Agents/metabolism , CRISPR-Cas Systems
5.
Am J Physiol Lung Cell Mol Physiol ; 324(1): L76-L87, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36472344

ABSTRACT

Bronchopulmonary dysplasia (BPD) is the most common lung disease of extreme prematurity, yet mechanisms that associate with or identify neonates with increased susceptibility for BPD are largely unknown. Combining artificial intelligence with gene expression data is a novel approach that may assist in better understanding mechanisms underpinning chronic lung disease and in stratifying patients at greater risk for BPD. The objective of this study is to develop an early peripheral blood transcriptomic signature that can predict preterm neonates at risk for developing BPD. Secondary analysis of whole blood microarray data from 97 very low birth weight neonates on day of life 5 was performed. BPD was defined as positive pressure ventilation or oxygen requirement at 28 days of age. Participants were randomly assigned to a training (70%) and testing cohort (30%). Four gene-centric machine learning models were built, and their discriminatory abilities were compared with gestational age or birth weight. This study adheres to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) statement. Neonates with BPD (n = 62 subjects) exhibited a lower median gestational age (26.0 wk vs. 30.0 wk, P < 0.01) and birth weight (800 g vs. 1,280 g, P < 0.01) compared with non-BPD neonates. From an initial pool (33,252 genes/patient), 4,523 genes exhibited a false discovery rate (FDR) <1%. The area under the receiver operating characteristic curve (AUC) for predicting BPD utilizing gestational age or birth weight was 87.8% and 87.2%, respectively. The machine learning models, using a combination of five genes, revealed AUCs ranging between 85.8% and 96.1%. Pathways integral to T cell development and differentiation were associated with BPD. A derived five-gene whole blood signature can accurately predict BPD in the first week of life.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Newborn , Humans , Bronchopulmonary Dysplasia/diagnosis , Bronchopulmonary Dysplasia/genetics , Birth Weight , Transcriptome/genetics , Artificial Intelligence , Infant, Premature , Gestational Age
6.
Stem Cells ; 40(5): 479-492, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35445270

ABSTRACT

Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Mesenchymal Stem Cells , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Bronchopulmonary Dysplasia/therapy , Endothelial Cells , Humans , Hyperoxia/genetics , Hyperoxia/metabolism , Infant, Newborn , Lung/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Sequence Analysis, RNA
7.
Pediatr Res ; 94(5): 1631-1638, 2023 11.
Article in English | MEDLINE | ID: mdl-37380752

ABSTRACT

Despite considerable advances, there is a need to improve the outcomes of newborn infants, especially related to prematurity, encephalopathy and other conditions. In principle, cell therapies have the potential to protect, repair, or sometimes regenerate vital tissues; and improve or sustain organ function. In this review, we present highlights from the First Neonatal Cell Therapies Symposium (2022). Cells tested in preclinical and clinical studies include mesenchymal stromal cells from various sources, umbilical cord blood and cord tissue derived cells, and placental tissue and membrane derived cells. Overall, most preclinical studies suggest potential for benefit, but many of the cells tested were not adequately defined, and the optimal cell type, timing, frequency, cell dose or the most effective protocols for the targeted conditions is not known. There is as yet no clinical evidence for benefit, but several early phase clinical trials are now assessing safety in newborn babies. We discuss parental perspectives on their involvement in these trials, and lessons learnt from previous translational work of promising neonatal therapies. Finally, we make a call to the many research groups around the world working in this exciting yet complex field, to work together to make substantial and timely progress to address the knowledge gaps and move the field forward. IMPACT: Survival of preterm and sick newborn infants is improving, but they continue to be at high risk of many systemic and organ-specific complications. Cell therapies show promising results in preclinical models of various neonatal conditions and early phase clinical trials have been completed or underway. Progress on the potential utility of cell therapies for neonatal conditions, parental perspectives and translational aspects are discussed in this paper.


Subject(s)
Mesenchymal Stem Cells , Placenta , Infant, Newborn , Infant , Humans , Female , Pregnancy , Infant, Premature
8.
Eur J Pediatr ; 182(1): 155-163, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36258056

ABSTRACT

This study aimed to evaluate symptoms of sleep-disordered breathing (SDB) among children born extremely preterm, with and without a history of bronchopulmonary dysplasia (BPD), including associations between sleep and respiratory symptoms, physical activity, pulmonary function, and pulmonary magnetic resonance imaging (MRI). This multi-center cross-sectional study enrolled children aged 7-9 years born extremely preterm with and without BPD. Participants completed the Pediatric Sleep Questionnaire (PSQ), the modified Epworth sleepiness scale, a respiratory symptom questionnaire, pedometer measurements, pulmonary function testing, and pulmonary MRI. Spearman's correlations and univariate and multivariable linear regression modelling were performed. Twenty-eight of 45 children included had a history of moderate-to-severe BPD. The prevalence of sleep-related symptoms was low, with the exception of hyperactivity and inattention. There were no differences in mean (SD) scores on sleep questionnaires in children with and without BPD (PSQ: 0.21 (0.13) vs 0.16 (0.14), p = 0.3; modified Epworth: 2.4 (2.4) vs 1.8 (2.8), p = 0.4). Multiple regression analyses examining difference in sleep scores between groups, adjusting for gestational age and intraventricular hemorrhage, found no statistical difference (p > 0.05). Greater daytime sleepiness was moderately correlated with FEV1%-predicted (r = - 0.52); no other moderate-strong associations were identified.  Conclusions: There was no evidence of clinically important differences in sleep symptoms between children with and without BPD, suggesting that sleep symptoms may be related to prematurity-related factors other than a BPD diagnosis, including airflow limitation. Further research is necessary to explore the relationship between sleep symptoms, airway obstruction, and neurobehavioral symptoms among premature-born children.  Trial registration: NCT02921308. Date of registration: October 3, 2016. What is Known: • Presence of bronchopulmonary dysplasia (BPD) may further contribute to the development of SDB, though its impact is not well-studied. • Premature-born children have a greater risk of lung structural and functional differences, including sleep-disordered breathing (SDB). What is New: • There was no difference in sleep symptoms between children with and without BPD, suggesting that sleep symptoms are related to other prematurity-related factors, such as airflow limitation. • Greater daytime sleepiness was correlated with lower FEV1 in our population, which reflects greater airflow limitation.


Subject(s)
Bronchopulmonary Dysplasia , Disorders of Excessive Somnolence , Sleep Apnea Syndromes , Infant, Newborn , Humans , Child , Bronchopulmonary Dysplasia/complications , Bronchopulmonary Dysplasia/diagnosis , Bronchopulmonary Dysplasia/epidemiology , Infant, Extremely Premature , Cross-Sectional Studies , Lung/diagnostic imaging , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/diagnosis , Sleep Apnea Syndromes/epidemiology
9.
Cochrane Database Syst Rev ; 2: CD013201, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36790019

ABSTRACT

BACKGROUND: Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES: To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS: We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA: We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS: We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS: No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.


Subject(s)
Cerebral Hemorrhage , Infant, Premature, Diseases , Infant , Infant, Newborn , Humans , Cerebral Hemorrhage/prevention & control , Infant, Extremely Premature , Infant, Premature, Diseases/prevention & control , Infant, Premature, Diseases/etiology , Infant Mortality , Stem Cells
10.
Am J Respir Crit Care Med ; 205(10): 1186-1201, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35286238

ABSTRACT

Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Vesicles , Lung Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Premature Birth , Animals , Bronchopulmonary Dysplasia/therapy , Female , Humans , Infant, Newborn , Lung , Lung Injury/therapy , Mice , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL