Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 156(3): 456-68, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24485454

ABSTRACT

The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.


Subject(s)
Bacterial Infections/immunology , Macrophages/immunology , Neutrophils/immunology , Urinary Tract Infections/immunology , Animals , Antigens, Ly/metabolism , Chemokine CXCL2/immunology , Female , Immune System Diseases , Kinetics , Leukocyte Disorders , Macrophages/cytology , Matrix Metalloproteinase 9/metabolism , Mice , Neutrophils/cytology , Specific Pathogen-Free Organisms , Tumor Necrosis Factor-alpha/immunology
2.
Kidney Int ; 100(2): 349-363, 2021 08.
Article in English | MEDLINE | ID: mdl-33930412

ABSTRACT

Enterohaemorrhagic E. coli cause major epidemics worldwide with significant organ damage and very high percentages of death. Due to the ability of enterohaemorrhagic E. coli to produce shiga toxin these bacteria damage the kidney leading to the hemolytic uremic syndrome. A therapy against this serious kidney disease has not been developed yet and the impact and mechanism of leukocyte activation and recruitment are unclear. Tissue-resident macrophages represent the main leukocyte population in the healthy kidney, but the role of this important cell population in shiga toxin-producing E. coli-hemolytic uremic syndrome is incompletely understood. Using state of the art microscopy and mass spectrometry imaging, our preclinical study demonstrated a phenotypic and functional switch of tissue-resident macrophages after disease induction in mice. Kidney macrophages produced the inflammatory molecule TNFα and depletion of tissue-resident macrophages via the CSF1 receptor abolished TNFα levels in the kidney and significantly diminished disease severity. Furthermore, macrophage depletion did not only attenuate endothelial damage and thrombocytopenia, but also activation of thrombocytes and neutrophils. Moreover, we observed that neutrophils infiltrated the kidney cortex and depletion of macrophages significantly reduced the recruitment of neutrophils and expression of the neutrophil-attracting chemokines CXCL1 and CXCL2. Intravital microscopy revealed that inhibition of CXCR2, the receptor for CXCL1 and CXCL2, significantly reduced the infiltration of neutrophils and reduced kidney injury. Thus, our study shows activation of tissue-resident macrophages during shiga toxin-producing E. coli-hemolytic uremic syndrome leading to the production of disease-promoting TNFα and CXCR2-dependent recruitment of neutrophils.


Subject(s)
Hemolytic-Uremic Syndrome , Shiga Toxin , Animals , Escherichia coli , Kidney , Macrophages , Mice , Neutrophil Infiltration
3.
Eur J Immunol ; 48(6): 990-1000, 2018 06.
Article in English | MEDLINE | ID: mdl-29446073

ABSTRACT

The hemolytic uremic syndrome (HUS) is a life-threatening disease of the kidney that is induced by shiga toxin-producing E.coli. Major changes in the monocytic compartment and in CCR2-binding chemokines have been observed. However, the specific contribution of CCR2-dependent Gr1high monocytes is unknown. To investigate the impact of these monocytes during HUS, we injected a combination of LPS and shiga toxin into mice. We observed an impaired kidney function and elevated levels of the CCR2-binding chemokine CCL2 after shiga toxin/LPS- injection, thus suggesting Gr1high monocyte infiltration into the kidney. Indeed, the number of Gr1high monocytes was strongly increased one day after HUS induction. Moreover, these cells expressed high levels of CD11b suggesting activation after tissue entry. Non-invasive PET-MR imaging revealed kidney injury mainly in the kidney cortex and this damage coincided with the detection of Gr1high monocytes. Lack of Gr1high monocytes in Ccr2-deficient animals reduced neutrophil gelatinase-associated lipocalin and blood urea nitrogen levels. Moreover, the survival of Ccr2-deficient animals was significantly improved. Conclusively, this study demonstrates that CCR2-dependent Gr1high monocytes contribute to the kidney injury during HUS and targeting these cells is beneficial during this disease.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli/physiology , Hemolytic-Uremic Syndrome/immunology , Kidney/pathology , Monocytes/immunology , Receptors, CCR2/metabolism , Animals , Antigens, Ly/metabolism , Chemokine CCL2/metabolism , Disease Models, Animal , Humans , Kidney/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, CCR2/genetics , Receptors, CXCR3/genetics , Shiga Toxin 2/administration & dosage
4.
Gut ; 66(12): 2110-2120, 2017 12.
Article in English | MEDLINE | ID: mdl-28615301

ABSTRACT

OBJECTIVE: Postoperative ileus (POI), the most frequent complication after intestinal surgery, depends on dendritic cells (DCs) and macrophages. Here, we have investigated the mechanism that activates these cells and the contribution of the intestinal microbiota for POI induction. DESIGN: POI was induced by manipulating the intestine of mice, which selectively lack DCs, monocytes or macrophages. The disease severity in the small and large intestine was analysed by determining the distribution of orally applied fluorescein isothiocyanate-dextran and by measuring the excretion time of a retrogradely inserted glass ball. The impact of the microbiota on intestinal peristalsis was evaluated after oral antibiotic treatment. RESULTS: We found that Cd11c-Cre+ Irf4flox/flox mice lack CD103+CD11b+ DCs, a DC subset unique to the intestine whose function is poorly understood. Their absence in the intestinal muscularis reduced pathogenic inducible nitric oxide synthase (iNOS) production by monocytes and macrophages and ameliorated POI. Pathogenic iNOS was produced in the jejunum by resident Ly6C- macrophages and infiltrating chemokine receptor 2-dependent Ly6C+ monocytes, but in the colon only by the latter demonstrating differential tolerance mechanisms along the intestinal tract. Consistently, depletion of both cell subsets reduced small intestinal POI, whereas the depletion of Ly6C+ monocytes alone was sufficient to prevent large intestinal POI. The differential role of monocytes and macrophages in small and large intestinal POI suggested a potential role of the intestinal microbiota. Indeed, antibiotic treatment reduced iNOS levels and ameliorated POI. CONCLUSIONS: Our findings reveal that CD103+CD11b+ DCs and the intestinal microbiome are a prerequisite for the activation of intestinal monocytes and macrophages and for dysregulating intestinal motility in POI.


Subject(s)
Dendritic Cells/cytology , Gastrointestinal Microbiome , Ileus/immunology , Ileus/microbiology , Macrophage Activation , Monocytes/immunology , Peristalsis/immunology , Postoperative Complications/immunology , Postoperative Complications/microbiology , Animals , Antigens, CD/immunology , CD11b Antigen/immunology , Disease Models, Animal , Gastrointestinal Transit , Ileus/physiopathology , Integrin alpha Chains/immunology , Mice , Mice, Transgenic , Postoperative Complications/physiopathology
5.
J Psychiatry Neurosci ; 42(4): 273-283, 2017 06.
Article in English | MEDLINE | ID: mdl-28556775

ABSTRACT

BACKGROUND: Targeting the N-methyl-D-aspartate receptor (NMDAR) is a major translational approach for treating negative symptoms of schizophrenia. Ketamine comprehensively produces schizophrenia-like symptoms, such as positive, cognitive and negative symptoms in healthy volunteers. The amplitude of the mismatch negativity (MMN) is known to be significantly reduced not only in patients with schizophrenia, but also in healthy controls receiving ketamine. Accordingly, it was the aim of the present study to investigate whether changes of MMN amplitudes during ketamine administration are associated with the emergence of schizophrenia-like negative symptoms in healthy volunteers. METHODS: We examined the impact of ketamine during an MMN paradigm with 64-channel electroencephalography (EEG) and assessed the psychopathological status using the Positive and Negative Syndrome Scale (PANSS) in healthy male volunteers using a single-blind, randomized, placebo-controlled crossover design. Low-resolution brain electromagnetic tomography was used for source localization. RESULTS: Twenty-four men were included in our analysis. Significant reductions of MMN amplitudes and an increase in all PANSS scores were identified under the ketamine condition. Smaller MMN amplitudes were specifically associated with more pronounced negative symptoms. Source analysis of MMN generators indicated a significantly reduced current source density (CSD) under the ketamine condition in the primary auditory cortex, the posterior cingulate and the middle frontal gyrus. LIMITATIONS: The sample included only men within a tight age range of 20-32 years. CONCLUSION: The MMN might represent a biomarker for negative symptoms in schizophrenia related to an insufficient NMDAR system and could be used to identify patients with schizophrenia with negative symptoms due to NMDAR dysfunction.


Subject(s)
Brain/physiology , Evoked Potentials, Auditory/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Healthy Volunteers/psychology , Ketamine/pharmacology , Schizophrenia/chemically induced , Adult , Brain/drug effects , Humans , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/diagnosis , Single-Blind Method , Young Adult
6.
J Immunol ; 194(4): 1628-38, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25595779

ABSTRACT

A dense network of macrophages and dendritic cells (DC) expressing the chemokine receptor CX3CR1 populates most tissues. We recently reported that CX3CR1 regulates the abundance of CD11c(+) DC in the kidney and thereby promotes renal inflammation in glomerulonephritis. Given that chronic inflammation usually causes fibrosis, we hypothesized that CX3CR1 deficiency should attenuate renal fibrosis. However, when we tested this hypothesis using the DC-independent murine fibrosis model of unilateral ureteral obstruction, kidney fibrosis was unexpectedly more severe, despite less intrarenal inflammation. Two-photon imaging and flow cytometry revealed in kidneys of CX3CR1-deficient mice more motile Ly6C/Gr-1(+) macrophages. Flow cytometry verified that renal macrophages were more abundant in the absence of CX3CR1 and produced more of the key profibrotic mediator, TGF-ß. Macrophages accumulated because of higher intrarenal proliferation, despite reduced monocyte recruitment and higher signs of apoptosis within the kidney. These findings support the theory that tissue macrophage numbers are regulated through local proliferation and identify CX3CR1 as a regulator of such proliferation. Thus, CX3CR1 inhibition should be avoided in DC-independent inflammatory diseases because it may promote fibrosis.


Subject(s)
Cell Proliferation , Kidney/immunology , Kidney/pathology , Macrophages/pathology , Receptors, Chemokine/immunology , Animals , CX3C Chemokine Receptor 1 , Disease Models, Animal , Fibrosis/metabolism , Fibrosis/pathology , Flow Cytometry , Immunohistochemistry , Kidney/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Real-Time Polymerase Chain Reaction , Receptors, Chemokine/metabolism , Reverse Transcriptase Polymerase Chain Reaction
7.
Acta Neuropathol ; 132(3): 413-31, 2016 09.
Article in English | MEDLINE | ID: mdl-27383204

ABSTRACT

Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.


Subject(s)
Autoimmunity/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-10/immunology , Myeloid Cells/metabolism , Receptors, Cytoplasmic and Nuclear/immunology , T-Lymphocytes/cytology , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , T-Lymphocytes/metabolism
8.
Front Immunol ; 14: 1227191, 2023.
Article in English | MEDLINE | ID: mdl-37790937

ABSTRACT

Introduction: Streptococcus pneumoniae is one of the main causes of community-acquired infections in the lung alveoli in children and the elderly. Alveolar macrophages (AM) patrol alveoli in homeostasis and under infectious conditions. However, the molecular adaptations of AM upon infections with Streptococcus pneumoniae are incompletely resolved. Methods: We used a comparative transcriptomic and proteomic approach to provide novel insights into the cellular mechanism that changes the molecular signature of AM during lung infections. Using a tandem mass spectrometry approach to murine cell-sorted AM, we revealed significant proteomic changes upon lung infection with Streptococcus pneumoniae. Results: AM showed a strong neutrophil-associated proteomic signature, such as expression of CD11b, MPO, neutrophil gelatinases, and elastases, which was associated with phagocytosis of recruited neutrophils. Transcriptomic analysis indicated intrinsic expression of CD11b by AM. Moreover, comparative transcriptomic and proteomic profiling identified CD11b as the central molecular hub in AM, which influenced neutrophil recruitment, activation, and migration. Discussion: In conclusion, our study provides novel insights into the intrinsic molecular adaptations of AM upon lung infection with Streptococcus pneumoniae and reveals profound alterations critical for effective antimicrobial immunity.


Subject(s)
CD11b Antigen , Pneumonia, Pneumococcal , Animals , Mice , Integrins , Lung , Macrophages, Alveolar , Proteomics , Streptococcus pneumoniae , Transcriptome
9.
Front Psychiatry ; 12: 671007, 2021.
Article in English | MEDLINE | ID: mdl-34177660

ABSTRACT

Disturbed functional connectivity is assumed to cause neurocognitive deficits in patients suffering from schizophrenia. A Glutamate N-methyl-D-aspartate receptor (NMDAR) dysfunction has been suggested as a possible mechanism underlying altered connectivity in schizophrenia, especially in the gamma- and theta-frequency range. The present study aimed to investigate the effects of the NMDAR-antagonist ketamine on resting-state power, functional connectivity, and schizophrenia-like psychopathological changes in healthy volunteers. In a placebo-controlled crossover design, 25 healthy subjects were recorded using resting-state 64-channel-electroencephalography (EEG) (eyes closed). The imaginary coherence-based Multivariate Interaction Measure (MIM) was used to measure gamma and theta connectivity across 80 cortical regions. The network-based statistic was applied to identify involved networks under ketamine. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) and the 5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC). Ketamine caused an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01). Significant increases in resting-state gamma and theta power were observed under ketamine compared to placebo (p < 0.05). The source-space analysis revealed two distinct networks with an increased mean functional gamma- or theta-band connectivity during the ketamine session. The gamma-network consisted of midline regions, the cuneus, the precuneus, and the bilateral posterior cingulate cortices, while the theta-band network involved the Heschl gyrus, midline regions, the insula, and the middle cingulate cortex. The current source density (CSD) within the gamma-band correlated negatively with the PANSS negative symptom score, and the activity within the gamma-band network correlated negatively with the subjective changed meaning of percepts subscale of the 5D-ASC. These results are in line with resting-state patterns seen in people who have schizophrenia and argue for a crucial role of the glutamate system in mediating dysfunctional gamma- and theta-band-connectivity in schizophrenia. Resting-state networks could serve as biomarkers for the response to glutamatergic drugs or drug development efforts within the glutamate system.

10.
Blood Adv ; 5(5): 1259-1272, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33651101

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) typically suffer from frequent and severe bacterial infections. Although it is well known that neutrophils are critical innate immune cells facilitating the early defense, the underlying phenotypical and functional changes in neutrophils during CLL remain largely elusive. Using a murine adoptive transfer model of CLL, we demonstrate aggravated bacterial burden in CLL-bearing mice upon a urinary tract infection with uropathogenic Escherichia coli. Bioinformatic analyses of the neutrophil proteome revealed increased expression of proteins associated with interferon signaling and decreased protein expression associated with granule composition and neutrophil migration. Functional experiments validated these findings by showing reduced levels of myeloperoxidase and acidification of neutrophil granules after ex vivo phagocytosis of bacteria. Pathway enrichment analysis indicated decreased expression of molecules critical for neutrophil recruitment, and migration of neutrophils into the infected urinary bladder was significantly reduced. These altered migratory properties of neutrophils were also associated with reduced expression of CD62L and CXCR4 and correlated with an increased incidence of infections in patients with CLL. In conclusion, this study describes a molecular signature of neutrophils through proteomic, bioinformatic, and functional analyses that are linked to a reduced migratory ability, potentially leading to increased bacterial infections in patients with CLL.


Subject(s)
Bacterial Infections , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Computational Biology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Neutrophils , Proteomics
11.
Front Immunol ; 12: 711876, 2021.
Article in English | MEDLINE | ID: mdl-34659202

ABSTRACT

Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to Plasmodium parasites. Here we use a newly developed transgenic Plasmodium berghei ANKA (PbAAma1OVA) parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that Ifnar1-/- mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite. Although CD8+ T cell responses generated in the spleen are essential for the development of ECM, we measured comparable parasite-specific cytotoxic T cell responses in ECM-protected Ifnar1-/- mice and wild type mice suffering from ECM. Importantly, CD8+ T cells were increased in the spleens of ECM-protected Ifnar1-/- mice and the blood-brain-barrier remained intact. This was associated with elevated splenic levels of CCL5, a T cell and eosinophil chemotactic chemokine, which was mainly produced by eosinophils, and an increase in eosinophil numbers. Depletion of eosinophils enhanced CD8+ T cell infiltration into the brain and increased ECM induction in PbAAma1OVA-infected Ifnar1-/- mice. However, eosinophil-depletion did not reduce the CD8+ T cell population in the spleen or reduce splenic CCL5 concentrations. Our study demonstrates that eosinophils impact CD8+ T cell migration and proliferation during PbAAma1OVA-infection in Ifnar1-/- mice and thereby are contributing to the protection from ECM.


Subject(s)
Brain/immunology , Eosinophils/physiology , Malaria, Cerebral/immunology , Parasitemia/immunology , Plasmodium berghei , T-Lymphocytes/immunology , Animals , Animals, Outbred Strains , Anopheles/parasitology , Antigens, Protozoan/immunology , Cell Movement , Chemokine CCL5/analysis , Chemokine CCL5/physiology , Cytotoxicity, Immunologic , Female , Leukocyte Count , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mosquito Vectors/parasitology , Organisms, Genetically Modified , Ovalbumin , Parasitemia/parasitology , Peptide Fragments , Plasmodium berghei/genetics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptors, CCR5/physiology , Spleen/chemistry , Spleen/immunology
12.
Mucosal Immunol ; 13(4): 702-714, 2020 07.
Article in English | MEDLINE | ID: mdl-32112048

ABSTRACT

The urothelium of the urinary bladder represents the first line of defense. However, uropathogenic E. coli (UPEC) damage the urothelium and cause acute bacterial infection. Here, we demonstrate the crosstalk between macrophages and the urothelium stimulating macrophage migration into the urothelium. Using spatial proteomics by MALDI-MSI and LC-MS/MS, a novel algorithm revealed the spatial activation and migration of macrophages. Analysis of the spatial proteome unravelled the coexpression of Myo9b and F4/80 in the infected urothelium, indicating that macrophages have entered the urothelium upon infection. Immunofluorescence microscopy additionally indicated that intraurothelial macrophages phagocytosed UPEC and eliminated neutrophils. Further analysis of the spatial proteome by MALDI-MSI showed strong expression of IL-6 in the urothelium and local inhibition of this molecule reduced macrophage migration into the urothelium and aggravated the infection. After IL-6 inhibition, the expression of matrix metalloproteinases and chemokines, such as CX3CL1 was reduced in the urothelium. Accordingly, macrophage migration into the urothelium was diminished in the absence of CX3CL1 signaling in Cx3cr1gfp/gfp mice. Conclusively, this study describes the crosstalk between the infected urothelium and macrophages through IL-6-induced CX3CL1 expression. Such crosstalk facilitates the relocation of macrophages into the urothelium and reduces bacterial burden in the urinary bladder.


Subject(s)
Cell Communication , Chemokine CX3CL1/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Proteomics , Urothelium/immunology , Urothelium/metabolism , Animals , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Immunohistochemistry , Macrophages/immunology , Mice , Proteomics/methods , Urinary Bladder/immunology , Urinary Bladder/metabolism , Urinary Bladder/microbiology , Urinary Tract Infections/etiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/pathology , Urothelium/microbiology
13.
Neuropsychopharmacology ; 44(7): 1239-1246, 2019 06.
Article in English | MEDLINE | ID: mdl-30758327

ABSTRACT

Abnormal gamma-band oscillations (GBO) have been frequently associated with the pathophysiology of schizophrenia. GBO are modulated by glutamate, a neurotransmitter, which is continuously discussed to shape the complex symptom spectrum in schizophrenia. The current study examined the effects of ketamine, a glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist, on the auditory-evoked gamma-band response (aeGBR) and psychopathological outcomes in healthy volunteers to investigate neuronal mechanisms of psychotic behavior. In a placebo-controlled, randomized crossover design, the aeGBR power, phase-locking factor (PLF) during a choice reaction task, the Positive and Negative Syndrome Scale (PANSS) and the Altered State of Consciousness (5D-ASC) Rating Scale were assessed in 25 healthy subjects. Ketamine was applied in a subanaesthetic dose. Low-resolution brain electromagnetic tomography was used for EEG source localization. Significant reductions of the aeGBR power and PLF were identified under ketamine administration compared to placebo (p < 0.01). Source-space analysis of aeGBR generators revealed significantly reduced current source density (CSD) within the anterior cingulate cortex during ketamine administration. Ketamine induced an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01) and increased response times (p < 0.001) and error rates (p < 0.01). Only negative symptoms were significantly associated with an aeGBR power decrease (p = 0.033) as revealed by multiple linear regression. These findings argue for a substantial role of the glutamate system in the mediation of dysfunctional gamma band responses and negative symptomatology of schizophrenia and are compatible with the NMDAR hypofunction hypothesis of schizophrenia.


Subject(s)
Brain/physiology , Evoked Potentials, Auditory , Gamma Rhythm , Ketamine/administration & dosage , Schizophrenia/chemically induced , Acoustic Stimulation , Adult , Brain/drug effects , Evoked Potentials, Auditory/drug effects , Excitatory Amino Acid Antagonists , Gamma Rhythm/drug effects , Glutamic Acid/physiology , Humans , Male , Schizophrenia/physiopathology , Young Adult
14.
Neuropsychopharmacology ; 43(7): 1608-1615, 2018 06.
Article in English | MEDLINE | ID: mdl-29453445

ABSTRACT

Auditory verbal hallucinations (AVH) are a common positive symptom of schizophrenia. Excitatory-to-inhibitory (E/I) imbalance related to disturbed N-methyl-D-aspartate receptor (NMDAR) functioning has been suggested as a possible mechanism underlying altered connectivity and AVH in schizophrenia. The current study examined the effects of ketamine, a NMDAR antagonist, on glutamate-related mechanisms underlying interhemispheric gamma-band connectivity, conscious auditory perception during dichotic listening (DL), and the emergence of auditory verbal distortions and hallucinations (AVD/AVH) in healthy volunteers. In a single-blind, pseudo-randomized, placebo-controlled crossover design, nineteen male, right-handed volunteers were measured using 64 channel electroencephalography (EEG). Psychopathology was assessed with the PANSS interview and the 5D-ASC questionnaire, including a subscale to detect auditory alterations with regard to AVD/AVH (AUA-AVD/AVH). Interhemispheric connectivity analysis was performed using eLORETA source estimation and lagged phase synchronization (LPS) in the gamma-band range (30-100 Hz). Ketamine induced positive symptoms such as hallucinations in a subgroup of healthy subjects. In addition, interhemispheric gamma-band connectivity was found to be altered under ketamine compared to placebo, and subjects with AUA-AVD/AVH under ketamine showed significantly higher interhemispheric gamma-band connectivity than subjects without AUA-AVD/AVH. These findings demonstrate a relationship between NMDAR functioning, interhemispheric connectivity in the gamma-band frequency range between bilateral auditory cortices and the emergence of AVD/AVH in healthy subjects. The result is in accordance with the interhemispheric miscommunication hypothesis of AVH and argues for a possible role of glutamate in AVH in schizophrenia.


Subject(s)
Gamma Rhythm/drug effects , Hallucinations/chemically induced , Ketamine/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Adolescent , Adult , Auditory Perception/drug effects , Cross-Over Studies , Dichotic Listening Tests , Electroencephalography/drug effects , Healthy Volunteers , Humans , Male , Single-Blind Method , Young Adult
15.
J Leukoc Biol ; 103(1): 13-22, 2018 01.
Article in English | MEDLINE | ID: mdl-28882904

ABSTRACT

Ly6C+ monocytes are important components of the innate immune defense against infections. These cells have been shown to proliferate in the bone marrow of mice with systemic infections. However, the proliferative capacity of Ly6C+ monocytes in infected peripheral tissues as well as the associated regulatory mechanisms remain unclear. In this study, we analyzed the proliferative capacity of Ly6C+ monocytes in the urinary bladder after infection with uropathogenic E. coli, one of the most prevalent pathogen worldwide, and in LPS-induced peritonitis. We show that Ly6C+ monocytes proliferated in the bladder after infection with uropathogenic E. coli and in the peritoneum after intraperitoneal injection of LPS. We identified IL-6, a molecule that is highly expressed in infections, as a crucial regulator of Ly6C+ monocyte proliferation. Inhibition of IL-6 via administration of antibodies against IL-6 or gp130 impeded Ly6C+ monocyte proliferation. Furthermore, repression of IL-6 trans-signaling via administration of soluble gp130 markedly reduced the proliferation of Ly6C+ monocytes. Overall, this study describes the proliferation of Ly6C+ monocytes using models of urinary tract infection and LPS-induced peritonitis. IL-6 trans-signaling was identified as the regulator of Ly6C+ monocyte proliferation.


Subject(s)
Antigens, Ly/metabolism , Cell Proliferation , Escherichia coli Infections/microbiology , Interleukin-6/metabolism , Monocytes/immunology , Urinary Tract Infections/immunology , Animals , Antigens, Ly/immunology , Cell Differentiation , Cells, Cultured , Escherichia coli/pathogenicity , Escherichia coli Infections/complications , Female , Interleukin-6/genetics , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Signal Transduction , Urinary Tract Infections/metabolism , Urinary Tract Infections/microbiology
16.
Pathogens ; 5(1)2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26861402

ABSTRACT

The antibacterial defense against infections depends on the cooperation between distinct phagocytes of the innate immune system, namely macrophages and neutrophils. However, the mechanisms driving this cooperation are incompletely understood. In this study we describe the crosstalk between Ly6C⁺ and Ly6C(-) macrophage-subtypes and neutrophils in the context of urinary tract infection (UTI) with uropathogenic E. coli (UPEC). Ly6C(-) macrophages acted as tissue resident sentinels and attracted circulating phagocytes by chemokines. Ly6C⁺ macrophages produced tumor necrosis factor (TNF) that licensed Ly6C(-) macrophages to release preformed CXCL2, which in turn caused matrix metalloproteinases (MMP-9) secretion by neutrophils to enable transepithelial migration.

SELECTION OF CITATIONS
SEARCH DETAIL