Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
PLoS Biol ; 20(12): e3001900, 2022 12.
Article in English | MEDLINE | ID: mdl-36469503

ABSTRACT

How progenitor cells can attain a distinct differentiated cell identity is a challenging problem given the fluctuating signaling environment in which cells exist and that critical transcription factors are often not unique to a differentiation process. Here, we test the hypothesis that a unique differentiated cell identity can result from a core component of the differentiated state doubling up as a signaling protein that also drives differentiation. Using live single-cell imaging in the adipocyte differentiation system, we show that progenitor fat cells (preadipocytes) can only commit to terminally differentiate after up-regulating FABP4, a lipid buffer that is highly enriched in mature adipocytes. Upon induction of adipogenesis in mouse preadipocyte cells, we show that after a long delay, cells first abruptly start to engage a positive feedback between CEBPA and PPARG before then engaging, after a second delay, a positive feedback between FABP4 and PPARG. These sequential positive feedbacks both need to engage in order to drive PPARG levels past the threshold for irreversible differentiation. In the last step before commitment, PPARG transcriptionally increases FABP4 expression while fatty acid-loaded FABP4 increases PPARG activity. Together, our study suggests a control principle for robust cell identity whereby a core component of the differentiated state also promotes differentiation from its own progenitor state.


Subject(s)
Adipogenesis , PPAR gamma , Mice , Animals , PPAR gamma/genetics , PPAR gamma/metabolism , Cell Differentiation/physiology , Adipocytes/metabolism , Transcription Factors/metabolism
2.
Mol Cell Proteomics ; 18(1): 65-85, 2019 01.
Article in English | MEDLINE | ID: mdl-30257879

ABSTRACT

Fibroblast activation protein-alpha (FAP) is a cell-surface transmembrane-anchored dimeric protease. This unique, constitutively active serine protease has both dipeptidyl aminopeptidase and endopeptidase activities and can hydrolyze the post-proline bond. FAP expression is very low in adult organs but is upregulated by activated fibroblasts in sites of tissue remodeling, including fibrosis, atherosclerosis, arthritis and tumors. To identify the endogenous substrates of FAP, we immortalized primary mouse embryonic fibroblasts (MEFs) from FAP gene knockout embryos and then stably transduced them to express either enzymatically active or inactive FAP. The MEF secretomes were then analyzed using degradomic and proteomic techniques. Terminal amine isotopic labeling of substrates (TAILS)-based degradomics identified cleavage sites in collagens, many other extracellular matrix (ECM) and associated proteins, and lysyl oxidase-like-1, CXCL-5, CSF-1, and C1qT6, that were confirmed in vitro In addition, differential metabolic labeling coupled with quantitative proteomic analysis also implicated FAP in ECM-cell interactions, as well as with coagulation, metabolism and wound healing associated proteins. Plasma from FAP-deficient mice exhibited slower than wild-type clotting times. This study provides a significant expansion of the substrate repertoire of FAP and provides insight into the physiological and potential pathological roles of this enigmatic protease.


Subject(s)
Fibroblasts/cytology , Gelatinases/genetics , Gelatinases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proteomics/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Adipokines/blood , Adipokines/chemistry , Amino Acid Oxidoreductases/blood , Amino Acid Oxidoreductases/chemistry , Animals , Cell Culture Techniques , Cell Line , Chemokine CXCL5/blood , Chemokine CXCL5/chemistry , Endopeptidases , Fibroblasts/metabolism , Gene Knockout Techniques , Humans , Macrophage Colony-Stimulating Factor/blood , Macrophage Colony-Stimulating Factor/chemistry , Mice , Protein Interaction Maps , Proteolysis , Substrate Specificity
3.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638902

ABSTRACT

Medium-chain fatty acids (mc-FAs) are currently applied in the treatment of long-chain fatty acid oxidation disorders (lc-FAOD) characterized by impaired ß-oxidation. Here, we performed lipidomic and proteomic analysis in fibroblasts from patients with very long-chain acyl-CoA dehydrogenase (VLCADD) and long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) deficiencies after incubation with heptanoate (C7) and octanoate (C8). Defects of ß-oxidation induced striking proteomic alterations, whereas the effect of treatment with mc-FAs was minor. However, mc-FAs induced a remodeling of complex lipids. Especially C7 appeared to act protectively by restoring sphingolipid biosynthesis flux and improving the observed dysregulation of protein homeostasis in LCHADD under control conditions.


Subject(s)
Caprylates/pharmacology , Fibroblasts/drug effects , Heptanoates/pharmacology , Lipid Metabolism, Inborn Errors/metabolism , Lipidomics/methods , Proteomics/methods , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Cardiolipins/metabolism , Cell Line , Female , Fibroblasts/metabolism , Genotype , Humans , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Male , Mitochondria/drug effects , Mitochondria/metabolism , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/metabolism , Proteome/metabolism , Sphingolipids/metabolism
4.
Artif Organs ; 44(3): 257-267, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31494943

ABSTRACT

The changes in the myocardial proteome and metabolome associated with left ventricular assist device (LVAD) therapy in patients with ischemic cardiomyopathy (ICM) are poorly characterized. We investigated the impact of mechanical unloading following LVAD therapy on the myocardial proteome and metabolome. Matched samples of 5 patients' myocardial tissue, harvested at the time of LVAD implant ("pre-LVAD") or heart transplant ("post-LVAD"), were studied by quantitative proteomics and metabolomics as well as being probed for T-tubule structure and connexin-43 distribution. Moreover, pre-LVAD proteome profiles of ICM context were bioinformatically compared to pre-LVAD proteome profiles of dilated cardiac myopathy (DCM). More than 2120 proteins were reliably identified and quantified in paired patient samples. LVAD therapy led to proteomic remodeling, including reduced levels of α-1-antichymotrypsin together with an overall decrease of immune response proteins and an increase of proteins involved in membrane biology. Metabolomics highlighted increased glucose and glucose-6-phosphate levels in the left ventricle upon LVAD therapy. Wheat germ agglutinin staining demonstrated improved T-tubule structure. Connexin-43 displayed a trend for more pronounced intercalated disc localization. In comparing pre-LVAD proteome profiles of ICM context with pre-LVAD proteome profiles of dilated cardiac myopathy (DCM), we noticed an overrepresentation in ICM of proteins associated with humoral immune response. Our findings underline an impact of LVAD therapy on left ventricular biology in ICM. The proteomic, metabolomic, and structural alterations described here are typically associated with cardiac recovery. On the molecular level, our findings indicate the possibility of cardiac remodeling under LVAD therapy in ICM.


Subject(s)
Heart Ventricles/metabolism , Heart-Assist Devices , Metabolome , Myocardial Ischemia/therapy , Proteome/metabolism , Aged , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Connexin 43/analysis , Connexin 43/metabolism , Female , Glucose/analysis , Glucose/metabolism , Heart Ventricles/pathology , Humans , Male , Middle Aged , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Myocardium/metabolism , Myocardium/pathology , Proteome/analysis
5.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 444-452, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28188928

ABSTRACT

The tobacco-related plant Nicotiana benthamiana is gaining interest as a versatile host for the production of monoclonal antibodies and other protein therapeutics. However, the susceptibility of plant-derived recombinant proteins to endogenous proteolytic enzymes limits their use as biopharmaceuticals. We have now identified two previously uncharacterized N. benthamiana proteases with high antibody-degrading activity, the papain-like cysteine proteinases NbCysP6 and NbCysP7. Both enzymes are capable of hydrolysing a wide range of synthetic substrates, although only NbCysP6 tolerates basic amino acids in its specificity-determining S2 subsite. The overlapping substrate specificities of NbCysP6 and NbCysP7 are also documented by the closely related properties of their other subsites as deduced from the action of the enzymes on proteome-derived peptide libraries. Notable differences were observed to the substrate preferences of N. benthamiana cathepsin B, another antibody-degrading papain-like cysteine proteinase. The complementary activities of NbCysP6, NbCysP7 and N. benthamiana cathepsin B indicate synergistic roles of these proteases in the turnover of recombinant and endogenous proteins in planta, thus representing a paradigm for the shaping of plant proteomes by the combined action of papain-like cysteine proteinases.


Subject(s)
Cathepsin B/metabolism , Nicotiana/enzymology , Plant Proteins/metabolism , Cathepsin B/genetics , Enzyme Activation , Plant Proteins/genetics , Nicotiana/genetics
6.
J Proteome Res ; 15(5): 1402-17, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27089454

ABSTRACT

Keratinocyte-specific deletion of ADAM17 in mice impairs terminal differentiation of keratinocytes leading to severe epidermal barrier defects. Mice deficient for ADAM17 in keratinocytes phenocopy mice with a keratinocyte-specific deletion of epidermal growth factor receptor (EGFR), which highlights the role of ADAM17 as a "ligand sheddase" of EGFR ligands. In this study, we aim for the first proteomic/degradomic approach to characterize the disruption of the ADAM17-EGFR signaling axis and its consequences for epidermal barrier formation. Proteomic profiling of the epidermal proteome of mice deficient for either ADAM17 or EGFR in keratinocytes at postnatal days 3 and 10 revealed highly similar protein alterations for ADAM17 and EGFR deficiency. These include massive proteome alterations of structural and regulatory components important for barrier formation such as transglutaminases, involucrin, filaggrin, and filaggrin-2. Cleavage site analysis using terminal amine isotopic labeling of substrates revealed increased proteolytic processing of S100 fused-type proteins including filaggrin-2. Alterations in proteolytic processing are supported by altered abundance of numerous proteases upon keratinocyte-specific Adam17 or Egfr deletion, among them kallikreins, cathepsins, and their inhibitors. This study highlights the essential role of proteolytic processing for maintenance of a functional epidermal barrier. Furthermore, it suggests that most defects in formation of the postnatal epidermal barrier upon keratinocyte-specific ADAM17 deletion are mediated via EGFR.


Subject(s)
ADAM17 Protein/deficiency , ErbB Receptors/deficiency , Keratinocytes , Proteome/metabolism , ADAM17 Protein/genetics , Animals , Epidermis/pathology , ErbB Receptors/genetics , Gene Deletion , Mice , Proteolysis , Proteome/analysis
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2515-25, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26209915

ABSTRACT

Fibroblast activation protein alpha (FAPα) is a cell surface protease expressed by cancer-associated fibroblasts in the microenvironment of most solid tumors. As there is increasing evidence for proteases having non-catalytic functions, we determined the FAPα interactome in cancer-associated fibroblasts using the quantitative immunoprecipitation combined with knockdown (QUICK) method. Complex formation with adenosin deaminase, erlin-2, stomatin, prohibitin, Thy-1 membrane glycoprotein, and caveolin-1 was further validated by immunoblotting. Co-immunoprecipitation (co-IP) of the known stoichiometric FAPα binding partner dipeptidyl-peptidase IV (DPPIV) corroborated the proteomic strategy. Reverse co-IPs validated the FAPα interaction with caveolin-1, erlin-2, and stomatin while co-IP upon RNA-interference mediated knock-down of DPPIV excluded adenosin deaminase as a direct FAPα interaction partner. Many newly identified FAPα interaction partners localize to lipid rafts, including caveolin-1, a widely-used marker for lipid raft localization. We hypothesized that this indicates a recruitment of FAPα to lipid raft structures. In density gradient centrifugation, FAPα co-fractionates with caveolin-1. Immunofluorescence optical sectioning microscopy of FAPα and lipid raft markers further corroborates recruitment of FAPα to lipid rafts and invadopodia. FAPα is therefore an integral component of stromal lipid rafts in solid tumors. In essence, we provide one of the first interactome analyses of a cell surface protease and translate these results into novel biological aspects of a marker protein for cancer-associated fibroblasts.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Fibroblasts/metabolism , Gelatinases/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Pseudopodia/metabolism , Serine Endopeptidases/metabolism , Cell Line , Colonic Neoplasms/pathology , Endopeptidases , Fibroblasts/pathology , Humans , Membrane Microdomains/pathology , Multiprotein Complexes/metabolism , Protein Transport , Pseudopodia/pathology
8.
Arch Biochem Biophys ; 603: 110-7, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27246477

ABSTRACT

The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development.


Subject(s)
Cysteine Proteases/chemistry , Plant Proteins/chemistry , Animals , Antibodies, Monoclonal/chemistry , Binding Sites , Catalysis , Cathepsin H/chemistry , Cathepsins/chemistry , Hydrolysis , Insecta , Mass Spectrometry , Papain/chemistry , Peptides/chemistry , Protein Binding , Proteomics , Recombinant Proteins/chemistry , Substrate Specificity , Nicotiana
9.
Cell Mol Life Sci ; 71(5): 899-916, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23811845

ABSTRACT

Endolysosomal cysteine cathepsins functionally cooperate. Cathepsin B (Ctsb) and L (Ctsl) double-knockout mice die 4 weeks after birth accompanied by (autophago-) lysosomal accumulations within neurons. Such accumulations are also observed in mouse embryonic fibroblasts (MEFs) deficient for Ctsb and Ctsl. Previous studies showed a strong impact of Ctsl on the MEF secretome. Here we show that Ctsb alone has only a mild influence on extracellular proteome composition. Protease cleavage sites dependent on Ctsb were identified by terminal amine isotopic labeling of substrates (TAILS), revealing a prominent yet mostly indirect impact on the extracellular proteolytic cleavages. To investigate the cooperation of Ctsb and Ctsl, we performed a quantitative secretome comparison of wild-type MEFs and Ctsb (-/-) Ctsl (-/-) MEFs. Deletion of both cathepsins led to drastic alterations in secretome composition, highlighting cooperative functionality. While many protein levels were decreased, immunodetection corroborated increased levels of matrix metalloproteinase (MMP)-2. Re-expression of Ctsl rescues MMP-2 abundance. Ctsl and to a much lesser extent Ctsb are able to degrade MMP-2 at acidic and neutral pH. Addition of active MMP-2 to the MEF secretome degrades proteins whose levels were also decreased by Ctsb and Ctsl double deficiency. These results suggest a degradative Ctsl-MMP-2 axis, resulting in increased MMP-2 levels upon cathepsin deficiency with subsequent degradation of secreted proteins such as collagen α-1 (I).


Subject(s)
Cathepsin B/deficiency , Cathepsin L/deficiency , Gene Expression Regulation/physiology , Matrix Metalloproteinase 2/metabolism , Animals , Blotting, Western , Cathepsin B/metabolism , Cathepsin L/metabolism , Cell Proliferation , Cell Survival , Cells, Cultured , Chromatography, High Pressure Liquid , Chromatography, Ion Exchange , Collagen Type I/metabolism , Fibroblasts/metabolism , Flow Cytometry , Hydrogen-Ion Concentration , Mice , Mice, Knockout , Proteolysis , Tandem Mass Spectrometry
10.
Mol Cell Proteomics ; 12(3): 611-25, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233448

ABSTRACT

Numerous studies highlight the fact that concerted proteolysis is essential for skin morphology and function. The cysteine protease cathepsin L (Ctsl) has been implicated in epidermal proliferation and desquamation, as well as in hair cycle regulation. In stark contrast, mice deficient in cathepsin B (Ctsb) do not display an overt skin phenotype. To understand the systematic consequences of deleting Ctsb or Ctsl, we determined the protein abundances of >1300 proteins and proteolytic cleavage events in skin samples of wild-type, Ctsb(-/-), and Ctsl(-/-) mice via mass-spectrometry-based proteomics. Both protease deficiencies revealed distinct quantitative changes in proteome composition. Ctsl(-/-) skin revealed increased levels of the cysteine protease inhibitors cystatin B and cystatin M/E, increased cathepsin D, and an accumulation of the extracellular glycoprotein periostin. Immunohistochemistry located periostin predominantly in the hypodermal connective tissue of Ctsl(-/-) skin. The proteomic identification of proteolytic cleavage sites within skin proteins revealed numerous processing sites that are underrepresented in Ctsl(-/-) or Ctsb(-/-) samples. Notably, few of the affected cleavage sites shared the canonical Ctsl or Ctsb specificity, providing further evidence of a complex proteolytic network in the skin. Novel processing sites in proteins such as dermokine and Notch-1 were detected. Simultaneous analysis of acetylated protein N termini showed prototypical mammalian N-alpha acetylation. These results illustrate an influence of both Ctsb and Ctsl on the murine skin proteome and degradome, with the phenotypic consequences of the absence of either protease differing considerably.


Subject(s)
Cathepsin B/deficiency , Cathepsin L/deficiency , Proteome/metabolism , Proteomics/methods , Skin/metabolism , Animals , Blotting, Western , Cathepsin B/genetics , Cathepsin L/genetics , Cell Adhesion Molecules/metabolism , Cells, Cultured , Chromatography, Liquid , Cystatin B/metabolism , Cystatin M/metabolism , Immunohistochemistry , Mice , Mice, Knockout , Peptides/metabolism , Proteolysis , Receptor, Notch1/metabolism , Serpins/metabolism , Tandem Mass Spectrometry
11.
Cells ; 13(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38607062

ABSTRACT

Limbal epithelial progenitor cells (LEPC) rely on their niche environment for proper functionality and self-renewal. While extracellular vesicles (EV), specifically small EVs (sEV), have been proposed to support LEPC homeostasis, data on sEV derived from limbal niche cells like limbal mesenchymal stromal cells (LMSC) remain limited, and there are no studies on sEVs from limbal melanocytes (LM). In this study, we isolated sEV from conditioned media of LMSC and LM using a combination of tangential flow filtration and size exclusion chromatography and characterized them by nanoparticle tracking analysis, transmission electron microscopy, Western blot, multiplex bead arrays, and quantitative mass spectrometry. The internalization of sEV by LEPC was studied using flow cytometry and confocal microscopy. The isolated sEVs exhibited typical EV characteristics, including cell-specific markers such as CD90 for LMSC-sEV and Melan-A for LM-sEV. Bioinformatics analysis of the proteomic data suggested a significant role of sEVs in extracellular matrix deposition, with LMSC-derived sEV containing proteins involved in collagen remodeling and cell matrix adhesion, whereas LM-sEV proteins were implicated in other cellular bioprocesses such as cellular pigmentation and development. Moreover, fluorescently labeled LMSC-sEV and LM-sEV were taken up by LEPC and localized to their perinuclear compartment. These findings provide valuable insights into the complex role of sEV from niche cells in regulating the human limbal stem cell niche.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Proteomics/methods , Mesenchymal Stem Cells/metabolism , Stem Cells , Melanocytes , Extracellular Vesicles/metabolism
12.
Blood Adv ; 8(11): 2846-2860, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38598725

ABSTRACT

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Dasatinib , Protein Kinase Inhibitors , Dasatinib/therapeutic use , Dasatinib/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Humans , Animals , Mice , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Central Nervous System Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects
13.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38722309

ABSTRACT

SYNTAXIN-11 (STX11) is a SNARE protein that mediates the fusion of cytotoxic granules with the plasma membrane at the immunological synapses of CD8 T or NK cells. Autosomal recessive inheritance of deleterious STX11 variants impairs cytotoxic granule exocytosis, causing familial hemophagocytic lymphohistiocytosis type 4 (FHL-4). In several FHL-4 patients, we also observed hypogammaglobulinemia, elevated frequencies of naive B cells, and increased double-negative DN2:DN1 B cell ratios, indicating a hitherto unrecognized role of STX11 in humoral immunity. Detailed analysis of Stx11-deficient mice revealed impaired CD4 T cell help for B cells, associated with disrupted germinal center formation, reduced isotype class switching, and low antibody avidity. Mechanistically, Stx11-/- CD4 T cells exhibit impaired membrane fusion leading to reduced CD107a and CD40L surface mobilization and diminished IL-2 and IL-10 secretion. Our findings highlight a critical role of STX11 in SNARE-mediated membrane trafficking and vesicle exocytosis in CD4 T cells, important for successful CD4 T cell-B cell interactions. Deficiency in STX11 impairs CD4 T cell-dependent B cell differentiation and humoral responses.


Subject(s)
B-Lymphocytes , CD4-Positive T-Lymphocytes , Qa-SNARE Proteins , Animals , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/metabolism , Mice, Knockout , Mice, Inbred C57BL , Female , Male , Germinal Center/immunology , Germinal Center/metabolism , Immunity, Humoral , Exocytosis
14.
Expert Rev Proteomics ; 10(5): 421-33, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24117201

ABSTRACT

Proteolysis shapes proteomes by protein degradation or restricted proteolysis, which generates stable cleavage products. Proteolytic (in-)activation of enzymes and cytokines is an essential aspect of the functional proteome status. Proteome-wide identification and quantification of proteolytic processing is accessible by complementary techniques for the focused analysis of protein termini. These innovative strategies are now widely applied and have transformed protease research. Pioneering studies portrayed apoptotic and caspase-dependent cleavage events. Protease-centric investigations focused predominantly on matrix metalloproteinases (MMPs), granzymes and aspartyl and cysteine cathepsins. The first in vivo degradomic studies were performed with mice lacking either cysteine cathepsins or matrix metalloproteinases. Process-centric degradomic analyses investigated infectious processes and mitochondrial import. Peptidomic analyses yielded disease biomarkers representing cleavage fragments from bodily fluids. The diversity of degradomic endeavors illustrates the importance of portraying proteolytic processing in health and disease. The present review provides an overview of the current status of degradomic studies.


Subject(s)
Peptide Hydrolases/metabolism , Animals , Apoptosis , Caspases/metabolism , Cathepsins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Granzymes/metabolism , Humans , Matrix Metalloproteinases/metabolism , Mitochondrial Proteins/metabolism , Protein Processing, Post-Translational , Proteolysis , Proteomics , Substrate Specificity , Tiopronin/metabolism
15.
Cells ; 12(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-38067185

ABSTRACT

Nuclear pore complexes (NPCs) are highly dynamic macromolecular protein structures that facilitate molecular exchange across the nuclear envelope. Aberrant NPC functioning has been implicated in neurodegeneration. The translocated promoter region (Tpr) is a critical scaffolding nucleoporin (Nup) of the nuclear basket, facing the interior of the NPC. However, the role of Tpr in adult neural stem/precursor cells (NSPCs) in Alzheimer's disease (AD) is unknown. Using super-resolution (SR) and electron microscopy, we defined the different subcellular localizations of Tpr and phospho-Tpr (P-Tpr) in NSPCs in vitro and in vivo. Elevated Tpr expression and reduced P-Tpr nuclear localization accompany NSPC differentiation along the neurogenic lineage. In 5xFAD mice, an animal model of AD, increased Tpr expression in DCX+ hippocampal neuroblasts precedes increased neurogenesis at an early stage, before the onset of amyloid-ß plaque formation. Whereas nuclear basket Tpr interacts with chromatin modifiers and NSPC-related transcription factors, P-Tpr interacts and co-localizes with cyclin-dependent kinase 1 (Cdk1) at the nuclear chromatin of NSPCs. In hippocampal NSPCs in a mouse model of AD, aberrant Tpr expression was correlated with altered NPC morphology and counts, and Tpr was aberrantly expressed in postmortem human brain samples from patients with AD. Thus, we propose that altered levels and subcellular localization of Tpr in CNS disease affect Tpr functionality, which in turn regulates the architecture and number of NSPC NPCs, possibly leading to aberrant neurogenesis.


Subject(s)
Alzheimer Disease , Hippocampus , Neural Stem Cells , Nuclear Pore Complex Proteins , Proto-Oncogene Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Chromatin/metabolism , Disease Models, Animal , Hippocampus/metabolism , Neural Stem Cells/metabolism , Nuclear Envelope/metabolism , Proto-Oncogene Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism
16.
Life Sci Alliance ; 6(1)2023 01.
Article in English | MEDLINE | ID: mdl-36414381

ABSTRACT

Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma. Here, we show that a novel interaction between the co-activator/co-repressor CTBP and the tumor suppressor ZBTB18 regulates the expression of SREBP genes. In line with our findings, metabolic assays and glucose tracing analysis confirm the reduction in several phospholipid species upon ZBTB18 expression. Our study identifies CTBP1/2 and LSD1 as co-activators of SREBP genes and indicates that the functional activity of the CTBP-LSD1 complex is altered by ZBTB18. ZBTB18 binding to the SREBP gene promoters is associated with reduced LSD1 demethylase activity of H3K4me2 and H3K9me2 marks. Concomitantly, the interaction between LSD1, CTBP, and ZNF217 is increased, suggesting that ZBTB18 promotes LSD1 scaffolding function. Our results outline a new epigenetic mechanism enrolled by ZBTB18 and its co-factors to regulate fatty acid synthesis that could be targeted to treat glioblastoma patients.


Subject(s)
Glioblastoma , Humans , Fatty Acids , Glioblastoma/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Lipids , Sterol Regulatory Element Binding Protein 1/genetics
17.
J Bacteriol ; 194(5): 1036-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178973

ABSTRACT

Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10(-4). Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/metabolism , Glutamate Dehydrogenase/metabolism , Mutation , Pseudogenes , Transcription Factors/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Glutamate Dehydrogenase/genetics , Repetitive Sequences, Nucleic Acid , Suppression, Genetic , Transcription Factors/genetics , Transcription, Genetic
18.
STAR Protoc ; 3(3): 101623, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36039073

ABSTRACT

The FoF1 ATP synthase (ATPase) is one of the most important protein complexes in energy metabolism. The isolation of functional ATPase complexes is fundamental to address questions about its assembly, regulation, and functions. This protocol describes the purification of intact and active ATPase from the model cyanobacterium Synechocystis sp. PCC 6803. Basis for purification is a 3×FLAG tag fused to the beta subunit. The ATPase is enzymatically active and its purity is demonstrated using mass spectrometry, denaturing, and blue-native PAGE. For complete details on the use and execution of this protocol, please refer to Song et al. (2022).


Subject(s)
Synechocystis , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Synechocystis/metabolism
19.
Cell Rep ; 39(13): 111018, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767959

ABSTRACT

Disruption of circadian glucocorticoid oscillations in Cushing's disease and chronic stress results in obesity and adipocyte hypertrophy, which is believed to be a main source of the harmful effects of obesity. Here, we recapitulate stress due to jet lag or work-life imbalances by flattening glucocorticoid oscillations in mice. Within 3 days, mice achieve a metabolic state with persistently high insulin, but surprisingly low glucose and fatty acids in the bloodstream, that precedes a more than 2-fold increase in brown and white adipose tissue mass within 3 weeks. Transcriptomic and Cd36-knockout mouse analyses show that hyperinsulinemia-mediated de novo fatty acid synthesis and Cd36-mediated fatty acid uptake drive fat mass increases. Intriguingly, this mechanism by which glucocorticoid flattening causes acute hyperinsulinemia and adipocyte hypertrophy is unexpectedly beneficial in preventing high levels of circulating fatty acids and glucose for weeks, thus serving as a protective response to preserve metabolic health during chronic stress.


Subject(s)
Glucocorticoids , Hyperinsulinism , Adipocytes/metabolism , Animals , Fatty Acids/metabolism , Glucocorticoids/pharmacology , Glucose/metabolism , Hyperinsulinism/metabolism , Hypertrophy/metabolism , Mice , Obesity/metabolism
20.
Biol Chem ; 392(11): 961-71, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21972973

ABSTRACT

The endolysosomal cysteine endoprotease cathepsin L is secreted from cells in a variety of pathological conditions such as cancer and arthritis. We compared the secretome composition and extracellular proteolytic cleavage events in cell supernatants of cathepsin L-deficient and wild-type mouse embryonic fibroblasts (MEFs). Quantitative proteomic comparison of cell conditioned media indicated that cathepsin L deficiency affects, albeit in a limited manner, the abundances of extracellular matrix (ECM) components, signaling proteins, and further proteases as well as endogenous protease inhibitors. Immunodetection corroborated that cathepsin L deficiency results in decreased abundance of the ECM protein periostin and elevated abundance of matrix metalloprotease (MMP)-2. While mRNA levels of MMP-2 were not affected by cathepsin L ablation, periostin mRNA levels were reduced, potentially indicating a downstream effect. To characterize cathepsin L contribution to extracellular proteolysis, we performed terminal amine isotopic labeling of substrates (TAILS), an N-terminomic technique for the identification and quantification of native and proteolytically generated protein N-termini. TAILS identified >1500 protein N-termini. Cathepsin L deficiency predominantly reduced the magnitude of collagenous cleavage sites C-terminal to a proline residue. This contradicts cathepsin L active site specificity and indicates altered activity of further proteases as a result of cathepsin L ablation.


Subject(s)
Cathepsin L/metabolism , Fibroblasts/metabolism , Proteome/metabolism , Amino Acid Sequence , Animals , Cathepsin L/genetics , Cell Line , Gene Deletion , Mice , Molecular Sequence Data , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL